
https://developers.autopay.pl/autopay-online-payment-gateway-documentation

Autopay Online Payment Gateway -
Documentation

Data wygenerowania: 2025-04-01

2

Autopay Online Payment Gateway - Documentation 7 ..
Definitions 7 ..
Environment addresses 11 ..
Transaction and settlement processing 11 ..

Flow chart of the transaction and clearing service 11 ...
Steps for integrating the handling of transactions and settlements 12

Data required for the integration of transaction and settlement processing 12
Data exchanged in the test environment 12 ..

Data provided by the Partner to AP: 12 ..
Data transferred from AP to Partner: 12 ...

Data transferred in a production environment 13 ..
By Partner to AP: 13 ..
By AP to Partner: 13 ..

Implementation of interfaces and processes on the partner's side 13
Integration tests and migration to the production environment 13

Start of the transaction 13 ..
Description of the start of the transaction 13 ...
List of transaction start parameters 14 ...
Method of initiating a transaction 16 ..

Redirection to Partner Site 17 ...
Description of redirection to Partner Site 17 ...
List of redirection parameters for the Partner Site 17 ...

Instant notifications (ITN) 17 ...
Description of instant notifications 18 ...
List of returned parameters for instant notifications 19 ..
Response to the instant notification 20 ...
Description of the confirmation fields for immediate notifications 20

Detailed description of the behaviour and change of payment statuses (paymentStatus)
22 ...

Handling transaction statuses from ITN - Simplified model 22
Handling transaction statuses from ITN - full model 23 ..

Security of transactions 23 ...
Description of transaction security 23 ..
Calculation of the value of a hash function 24 ..
Calculation of hash function value - Hash field 24 ..
Example calculation of the hash function value at the start of a transaction 24
Example calculation of the value of a hash function when returning a customer to
the Partner Site 26 ..
Example calculation of the value of a hash function in an ITN message 26
Example calculation of the hash function value in querying the list of Payment
Channels 27 ..

Additional extensions 29 ...
Alternative transaction initiation models 29 ...

Card pre-authorisation 29 ..
General description of the operation of the card pre-authorisation service 29
Steps in a card pre-authorisation transaction 30 ..

Blocking at the request of the Partner 30 ..
Card debit at the Partner's request 31 ...
Description of the card charge at the partner's request 31
Description of available parameters for card debit at the Partner's request 31 ...
Confirmation of transaction for card debit at Partner's request 32

3

Description of parameters to be returned for card debit at the partner's request
33 ...

Release of blocking at the request of the Partner 33 ...
Release of blocking after overdue transactions 33 ..
Schemes for Preauthorisation 34 ...
Scheme A for Preauthorisation: Setting up a block during the authorisation of a
one-off payment 34 ..
Scheme B for Preauthorisation: Assumption of a block during the initiation of an
automatic payment (card enrolment)README.md 34 ..
Scheme C for Preauthorisation: Setting up a lock using a previously stored card

35 ...
Scheme D for Preauthorisation: Partner's order to debit a previously authorised
card 35 ...
Scheme E for Preauthorisation: Order by Partner to release the lock (without
deducting funds) 35 ...
Scheme F for Preauthorisation: Release of lock by the Scheme (without
deduction of funds) 36 ...

Pre-transaction 36 ..
Pre-transaction description 36 ..
Calling a Pre-transaction 38 ..

Response to Pre-transaction - link to follow up on transaction 39
Pre-transaction object 39 ..
Transaction object attributes for Pre-transaction 39 ...
Response to Pre-transaction - no continuation of transaction 40
Pre-transaction outcome 40 ..
Correct validation of parameters 41 ...
Handling of responses for Transactions 42 ...

Requesting transfer details for a Fast Transfer transaction 43 ..
Description of ordering transfer data in a Fast Transfer transaction 43
Calling 43 ..
Answer - transfer details 44 ..
List of returned parameters for the response 44 ..

BLIK 0 OneClick payment 45 ..
Description of BLIK 0 OneClick payments 45 ..
Calling BLIK 0 OneClick payments 46 ..

Google Pay 47 ..
Description 47 ...
Communication scheme 47 ...
Google Pay transaction registration 48 ...
Additional information 49 ..

Apple Pay 49 ..
Autopay widget (WhiteLabel model) 51 ...

Autopay WidgetJS SDK 51 ...
Embedding the SDK 51 ..
Examples of configurations 52 ...
Detailed discussion of the configuration of the WidgetConnection object 52
Card Widget - Example of implementation on a partner website 53

Card Widget - Detailed scheme of communication and data exchange 60
Notification of the launch of an automatic payment (RPAN) 61

Visa Mobile widget - Detailed scheme of communication and data exchange 65
Description of the sample HTML JS code (Card Widget and VisaMobile) 66

4

Automatic payment 69 ...
Description of automatic payment 69 ...
Activation of automatic payment 69 ...
Process for activating the automatic payment service 70 ..
Automated transaction start message 70 ...
Notification of the launch of an automatic payment (RPAN) 71
Description of the parameters returned for triggering the automatic payment 72

Confirmation element of the automatic payment 75 ...
ITN/ISTN/IPN/RPAN/RPDN message retry scheme 76 ...

Charge for automatic payment 76 ..
Automated payment transaction start message 77 ..
Deactivation of service 78 ..
Automatic payment deactivation message 78 ..
List of parameters for deactivating automatic payment 78 ..
Response 79 ...
Element confirmation 79 ...
Notification of deactivation of automatic payment (RPDN) 80
Description of the returned parameters 80 ...
Acknowledgement of receipt of the message 81 ..
Element Confirmation 82 ..

Starting a transaction with additional parameters 82 ...
Product basket 88 ..

Description of the product basket 88 ..
Element Params 89 ...
Product basket display on the Payment Channel selection screen 91

Additional online communication options to the partner 91 ...
Additional fields in the ITN/IPN message of the incoming transaction 91

Description 91 ...
Full list of additional fields in the ITN/IPN message 91 ...

Detailed description of the change in the verification status - for a transaction
successfully completed (positive or negative result) 95 ...
Detailed description of verification status change - for a transaction not completed
correctly 96 ...
Detailed transaction statuses 96 ..

Transaction status values - General statuses (independent of the payment
channel) 96 ..
Transaction status values - Card statuses 97 ...
Transaction status values - BLIK transaction specific statuses 97

Immediate notification of a change in product status (IPN) 98 ..
Immediate notification of a change in the status of a settlement transaction (ISTN) 98 ...

Returned parameters 99 ...
Response to notification 101 ...
Detailed description of the behaviour and change of settlement statuses
(transferStatus) 101 ..

Additional services 102 ...
Querying the list of currently available Payment Channels 102 ...

Description 102 ...
List of available parameters 102 ...
Response to request 103 ..

Requesting a list of currently available formal consents 108 ...
Description 108 ...

5

List of available parameters 109 ...
List of returned parameters 109 ...
Description of response handling 113 ...

Balance enquiry 114 ..
Description 114 ...
List of available parameters for the current balance 114 ...
Response to request for current balance 114 ...
List of response fields 115 ..

Balance supply 116 ..
Description 116 ...

Balance withdrawals 116 ...
Description 116 ...
List of available parameters for balance withdrawals 116 ..
Response to request 120 ..

Description of the fields 121 ..
Transaction refunds 121 ..

Description 121 ...
List of available parameters 122 ...
Description of the fields 123 ...

Product returns 124 ...
Description 124 ...
List of parameters 124 ..
Response to request 125 ..
Description of the fields 125 ...

Enquiry about the status of a refund or a withdrawal from the balance 126
Description 126 ...
List of available parameters for balance withdrawals 126 ..
Response to request 127 ..

Description of the fields 127 ..
Transaction summary page 128 ...

Description 128 ...
List of parameters for the transaction summary method 128

Enquiry about the status of a transaction 129 ...
Description 129 ...
List of parameters available for transaction status 129 ..
HTTP header for transaction status request 129 ...
List of fields for a transaction status query 130 ..
Handling of transaction status query responses - proposal to handle multiple
transactions in response 131 ..

Cancellation of an unpaid transaction 132 ..
Description of cancellation of an unpaid transaction 132 ..
List of parameters available for cancelling an unpaid transaction 132

Heading for cancellation of an unpaid transaction 133 ...
List of parameters for cancelling an unpaid transaction 133
Responses to requests for cancellation of transactions 134

Error messages 134 ..
Description of error messages 134 ...

Transaction and settlement patterns 135 ...
Model Paywall 135 ..
Model WhiteLabel 136 ...

Extended structure of services and billing points 136 ...

6

Settlement models 137 ...
Collective settlement model for transactions (default model) 137

Settlement model for transactions after each payment 138
Collective product billing model 139 ..

Product billing model after each payment 139 ...
On-demand settlement model 140 ...

7

Autopay Online Payment Gateway -
Documentation

Autopay Online Payments is a comprehensive solution for accepting payments from customers of
online stores, supporting various payment methods available on the market, such as transfers, Pay by
link, BLIK, Google Pay, Apple Pay.
In this documentation, you will find everything you need to quickly implement the payment gateway
in your online store.
The Autopay Online Payments documentation includes sections such as Transaction and Settlement
Management, Additional Extensions.

Definitions
Application – Partner's Mobile Application, communicating with the Autopay Online Payment System
SDK to register Transactions.

AP – Autopay S.A. Company, headquartered in Sopot, at Powstańców Warszawy 6, registered with the
District Court Gdańsk-North in Gdańsk, Commercial Division VIII of the National Court Register under
KRS number 0000320590, with tax ID (NIP) 585-13-51-185, REGON 191781561, with share capital of 2
205 500 PLN (fully paid), supervised by the Financial Supervision Commission and registered as a
national payment institution under IP17/2013, owner of the System.

BalancePoint (Settlement Point) – an entity within the Payment System representing a Store
integrated with the Marketplace Platform and registered in the Payment System using a form
provided by AP to the Partner.

ClientHash - a parameter in messages; allows a payment instrument (e.g., Card) to be assigned to a
Client in an anonymized way. Based on this, the Partner can initiate subsequent charges in the
automatic payment model.

CommissionModel – a commission model established with the Integrator. It describes the
commission values for transactions transferred to AP and the Integrator.

Business Day – a day from Monday to Friday, excluding public Polish holidays.

Integration Form – a web page where a form is available, allowing the Client to register, edit, or add
a new Service.

Payment Instrument (Payment Channel) – a set of procedures or an individualized device agreed
upon by the Client and their provider, used by the Client to initiate a payment order, e.g., Card, PBL.

e-transfer tool – a set of procedures or an individualized device agreed upon by the Partner and AP,
used by the Partner to initiate a payment order allowing the withdrawal of funds from the balance to
the bank account of the Partner or Client and another payment instrument owned by the Partner or
Client. The availability of the functionality depends on individual arrangements between the Partner
and AP.

https://developer.autopay.pl/autopay-sdk/about
https://developer.autopay.pl/autopay-sdk/about

8

Integrator – Integrators are called partners who have implemented Autopay Online Payments in their
systems and enable their activation from within their own solutions. Integrators include entities such
as Shoper, Sky-Shop, Gymsteer, Selly verifications, FaniMani, AtomStore, Ebexo, Selly Azymut,
PayNow, Comarch.

IPN (Instant Product Notification) - immediate notification sent from the Online Payment System
to the Partner Service communicating a change in product status. The structure of the IPN is similar to
the ITN (extended only by the node product).

ITN (Instant Transaction Notification)- immediate notification sent from the Online Payment
System to the Partner Service transmitting a change in the status of the transaction.

ISTN (Instant Settlement Transaction Notification) - immediate notification of a change in the
status of a settlement transaction. The system shall immediately transmit notifications of the fact that
a settlement transaction has been ordered (withdrawals/returns, if any) and of a change in its status.

ICN (Instant Configuration Notification) - immediate notification of the configuration of a newly
registered shop, communicating information about a change in the shop's card status (e.g. in the case
of card activation). ICN messages can also be sent in the event of a change in the shop's
configuration, a change in its AML data, the enabling/disabling of a payment channel. The provision of
functionality is subject to individual arrangements between the Partner and AP.

Card - A payment card issued under the VISA and Mastercard systems, permitted by the regulations
of those systems to execute Transactions without its physical presence.

Customer (Payer) - a person who makes a payment on the Website for services or products of a
Partner using the System.

Product basket - This is the information about the components of the payment, transferred (in the
payment link) to the System for subsequent processing. Each product of the shopping cart is
described by two mandatory fields: the constituent amount and a field allowing the transfer of
parameters specific to the product.

Payment link - request enabling the start of an Input Transaction (described in part Start of the
transaction). It can be used directly on the website (POST method), while in e-mails to customers it
should be used Pre-transaction in order to obtain a short link to the payment (GET method).

Verification link - URL directing to the Verification Transfer.

Marketplace - a payment solution operating within the framework of the Autopay Online Payment
System. It enables the Partner to operate a sales platform where products or services are offered to
customers by the Partner's Contractors. Advanced settlement models for Transactions and Settlement
Transactions allow payments to be made directly from the Customer to the Partner Contractor, taking
into account the Basket of products. The provision of the functionality is subject to individual
arrangements between the Partner and AP.

Payer Model - a model in which the commission for the transaction carried out is paid by the
customer to AP (cost added to the amount of the transaction). In this case, the customer also accepts
AP's terms and conditions during payment.

Merchant's model - a model in which the commission is settled between Autopay and the partner

9

and is not added to the amount of the transaction paid by the customer.

Partner - the entity that is the recipient of funds from the sale of products or services distributed by
the Affiliate on the Site.
A partner, in the case of the Marketplace model, is an entity, which is not a consumer, interested in
handling the acceptance by AP of payments due to the partner for products or services distributed by
the partner.

Pay By Link (PBL) - a tool for making payments via interbank transfer from the customer's account
to the AP account. After logging in to online banking - the data needed to execute the transfer
(recipient's information data, number of his bank account, amount and date of transfer execution) are
filled in automatically thanks to the data exchange system between the bank and AP.

Technical Agent - the entity with the right to access the Partner's Payment Account, which
authorises this access (consent or agreement). In the system, the power of attorney is represented by
the configuration of the PlenipotentiaryID: one entity can have multiple proxies for different
Partners.

Marketplace platform - platform on which the option to register Settlement Points is made
available.

Automatic payment - payment made without the need each time to enter the Card data or the data
for authorising transfer.

One-click payment - is an automatic payment ordered by the customer.

Cyclical payment - is an automatic payment ordered without customer involvement (by the Partner
Service).

Pre-transaction - specific (performed in the background) ordering payment link.

Verification transfer - The part of the process related to registration and editing of the Partner's
Service(s) in the System. It consists of the Partner performing a fund transfer to verify the data and
bank account for the disbursement of funds to the Partner. Data verification is an obligation of the AP
arising, inter alia, from the Act of 16/11/2000 on the prevention of money laundering and financing of
terrorism. Each verification transfer must receive final verification status (positive or negative) within
30 days of payment of the transaction. If the final verification status is not given within the timeframe
specified above, the system will automatically give it a negative status. This process applies to
verification where Autopay directs a request to complete the data to the customer and does not
receive the return information necessary to carry out this verification.

Payment Account (Balance) - payment account maintained by AP for the Partner, on which the
funds deposited from Customers are collected. The provision of the functionality is subject to
individual arrangements between the Partner and AP.

RPAN (Recurring Payment Activation Notification) - message about activation of the automatic
payment service.

RPDN (Recurring Payment Deactivation Notification) - message about deactivation of the
automatic payment service.

10

Serwis - the Partner's website or websites integrated with the System, where the Customer can
purchase products or services from the Partner (or from the Partner's Counterparty in the case of the
Marketplace).
In the case of a Marketplace, an object in the Payment System representing the Partner's
Marketplace. All transactions started by the said Marketplace are attached to it.

Specyfikacja - documentation describing the communication between the Service and the System.

AP Online Payment System (System) - an IT and functional solution whereby the AP provides the
Partner with an application to process customer payments made with the use of Payment
Instruments, as well as to verify the status of payments and to receive payments.

Fast Transfer - execution of payments via intra-bank transfer from the Customer's account to AP's
account. The payment made via PBL differs from payments made via PBL in that the Customer must
fill in all the data needed to make the transfer himself.

Transaction - means a payment transaction in the meaning of the Polish Act of 19 August 2011 on
payment services.

Input transaction - part of the payment handling process concerning the payment made by the
customer to AP.

Settlement transaction - part of the payment processing process, concerning the transfer made by
AP to the Partner's account. In order for a Settlement Transaction to be created, the Input Transaction
must be paid for by the Customer. A Settlement Transaction may relate to a single Input Transaction
(payment), or aggregate multiple of them.

Act - Polish Act of 19 August 2011 on payment services.

Link validity - parameter specifying the point in time beyond which the Payment Link ceases to be
active. It should be set by the LinkValidityTime parameter in the Payment Link.

Validity of transactions - parameter specifying the point in time beyond which the Payment Link
ceases to be active. It should be set by the LinkValidityTime parameter in the Payment Link.

Autopay widget - a mechanism enabling payment by Card for products/services offered by the
Partner, in which Card data are entered by the Client into the mechanism embedded directly in the
Partner's Website. Invoking the Card widget format requires the implementation of JavaScript code
using a dedicated AP library.

Onboarding widget - a solution that allows the Integrator to embed the Integrator Form (prepared
by Autopay) directly on the Integrator's website, so that the Partner is not redirected to the Autopay
domain when registering their shop - the whole process is carried out on the Partner's Website.

WhiteLabel - integration model, in which the customer already on the Service selects the payment
channel and accepts the rules and regulations (provided the need for their acceptance results from
individual arrangements between the Partner and AP), and the start of the transaction includes a
completed GatewayID field (and in certain cases DefaultRegulationAcceptanceID or
RecurringAcceptanceID).

Initiation of a payment order - the point in time when the payment gateway user selects a

11

payment channel and is redirected to the page according to the selected payment channel or (for
automatic payments, e-wallets or BLIK) an attempt is made to debit the card or account at the
payment channel provider.

Environment addresses
TEST

gate_host: https://testpay.autopay.eu

cards_gate_host: https://testcards.autopay.eu

PRODUCTION

gate_host: https://pay.autopay.eu

cards_gate_host: https://cards.autopay.eu

Transaction and settlement processing

Flow chart of the transaction and clearing service

On the Partner Site, after completing the order, the Customer is presented with the option of making
a payment using the System. Clicking on the appropriate link initiates the transaction and opens in a
new window:

a) a dedicated page of the System prepared by AP, where the Customer is presented with a list of
available Payment Channels and a summary of the registered transaction or

b) directly from a Payment Channel (Bank, BLIK or for payment by Card).

On the System's side, the transmitted parameters are validated and the transaction is saved with a
fixed validity period. If, at the time of validation, the validity period of the link is already exceeded,
the Customer will receive an appropriate message (verification of the validity of the transaction also
takes place when the payment status is changed). After positive verification of the transaction
parameters (and after selection of the Payment Channel), the Customer authorises the transaction. In
its title, in addition to the identifiers assigned by the System, there may also be a fixed description,
agreed in advance between the AP and the Partner, or a dynamic value provided by the Partner at the
start of the transaction.

The recommended integration model is to transmit a message to start a transaction in the
background, i.e. without redirecting the user to the System (see Pre-transaction). In this model, it is
possible to use advanced forms of transaction authorisation (WhiteLabel, automatic payments, SDK
mobile), diagnosis of the correctness of the transmitted parameters and many other extensions.

12

Once the transaction is authorised (on the Payment Channel page) the Customer returns from it to
the System, where the Customer is automatically redirected to the Partner Service.

TIP: A detailed description of the structure of the return link can be found in part of the
Redirection to Partner Site.

The authorisation (payment) status received from the Payment Channel is transmitted from the
System to the Partner Service via an ITN message. The System will continue to send messages until
the receipt is acknowledged by the Partner Service or the validity period of the notification expires.
Transactions which are paid after the expiry of the validity period of the transaction - will be returned
to the Customer (sender of the transfer).

Optionally, the System may notify the fact that a Settlement Transaction has been issued. A suitably
modified ISTN message is used for this purpose.

Steps for integrating the handling of transactions and settlements

Data required for the integration of transaction and settlement processing

The required data exchanged during integration differs for test and production environments. Below is
a list of parameters passed from AP to Partner and in the reverse direction.

General information is also provided, i.e. active payment channels with graphics (as a result of
querying the list of available payment channels).

Optionally, there may be additional data transmitted by the Partner to the AP, for example:
information about the required content of the shopping cart and the way it is processed (in reports,
billing, admin panel), additional requirements (for prepaid balance recharge). For
automatic BLIK payments also the default lifespan of activated automatic payments and the default
label of activated automatic payments.

Data exchanged in the test environment

Data provided by the Partner to AP:

Address for ITN messages
Address for RPAN messages (may be the same as for ITN messages) [for automatic payments].
Address for RPDN messages (may be the same as for ITN messages) [for automatic payments].
Payment return address (no parameters)

Data transferred from AP to Partner:

Address of the online payment system
ServiceID
AcceptorID [for wallets in the WhiteLabel model]
Shared key
Hashing result
Test form address
IP address from which ITNs are sent
Address to administration panel
Login

13

Password

Data transferred in a production environment

By Partner to AP:

Address for ITN messages
Address for RPAN messages (may be the same as for ITN messages) [for automatic payments].
Address for RPDN messages (may be the same as for ITN messages) [for automatic payments].
Payment return address (no parameters)
Email addresses for transaction reports
Email addresses for invoices and billing reports
Email addresses for complaints (sent in messages to Payers)

By AP to Partner:

Address of the online payment system
ServiceID
AcceptorID [for wallets in the WhiteLabel model]
Shared key
Hashing result
Test form address
IP address from which ITNs are sent
Address to administration panel
Login
Password

Implementation of interfaces and processes on the partner's side

In the minimum version of the integration, support for starting a transaction, returning from it and
support for ITN communication should be implemented.

TIP: It is advisable to familiarise yourself with the scheme of operation. If necessary, it is also
advisable to familiarise yourself with additional parameters or services.

Integration tests and migration to the production environment

During testing, the white fields of the sheet should be completed and sent back to the AP to confirm
correct integration before migration to the production environment.

TIP: Prior to production deployment, it is recommended to perform tests in accordance with the
test scenarios in the basic version and, for more advanced integrations, also according to
additional scenarios.

Start of the transaction

Description of the start of the transaction

https://developers.autopay.pl/scenariuszetestowe

14

The Partner service initiating the transaction transmits to the Online Payment System the parameters
necessary to complete the transaction and the subsequent transmission of the payment status.

All parameters are passed via the POST method (Content-Type: application/x-www-form-urlencoded).

The protocol is case-sensitive in both names and values of parameters. Values of transmitted
parameters should be encoded in UTF-8 (and transport protocol - encode before sending, unless the
tool used to send the message does not do this itself, encoding example: URLEncode).

List of transaction start parameters

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10}
The Partner Service ID, assigned during
service registration, uniquely identifies the
Partner Service in the Online Payment
System. Numbers are acceptable.

2 OrderID YES string{1,32}

Transaction identifier of up to 32 Latin
alphanumeric characters. The field value
must be unique for the Partner Service.
Acceptable alphanumeric Latin characters
and characters in the range: -_

3 Amount YES amount

Transaction amount. A dot '.' is used as
decimal separator. Format: 0.00; maximum
length: 14 digits before the dot and 2 after
the dot. NOTES: The permissible value of a
single Transaction in the Production System
is respectively:
• for PBL – min. 0.01 PLN, max. 100000.00
PLN (or up to the amount set by the Bank
issuing the payment instrument);
• for Payment Cards – min. 0.10 PLN, max.
100000.00 PLN (or up to the individual limit
of a single transaction at the Card Issuer's
Bank);
• for Fast transfers – min. 0.01 PLN, max.
100000.00 PLN (or up to the individual limit
of a single transaction at the Bank for an
intra-bank transfer);
• for BLIK – min. 0.01 PLN, max. 75000.00
PLN (or up to the individual limit of a single
transaction at the Bank for an intra-bank
transfer);
• for deffered payments – min. 100.00 PLN,
max. 2000.00 PLN;
• for Alior Installments – min. 50.00 PLN,
max. 7750.00 PLN_

15

Hash
order name required type description

4 Description NO string{1,79}

Title of the transaction (payment); at the
beginning of the transfer title, the transaction
identifiers assigned by the Online Payment
System are placed, to which the value of this
parameter is appended. In some cases,
independent of the AP, the title of the
transfer may be additionally modified by the
Bank, in which the payment made by the
customer took place. The value of the
parameter allows for alphanumeric Latin
characters and characters in the range: . : -
, spacja.

5 GatewayID NO integer{1,5}

Identifier of the Payment Channel by which
the Customer intends to settle the payment.
This parameter is responsible in particular for
the presentation model of the Payment
Channels:
• - on the AP page - parameter value "0";
• - on the Partner Site - the value of the
parameter corresponds to the Payment
Channel selected by the Customer, e.g.
GatewayID=3.
All Payment Channels to be embedded on the
Website are made available to the Partner as
part of the service gatewayList.

6 Currency NO string{1,3}

Transaction currency; the default currency is
PLN (the use of another currency must be
agreed during integration). One currency is
supported within ServiceID. Acceptable
values only: PLN, EUR, GBP and USD.

7 CustomerEmail NO string{3,255} Customer email address.

19 ValidityTime NO string{1,19}

Transaction expiry time; when exceeded, the
link ceases to be active and any deposit is
returned to the sender of the transfer;
example value: 2021-10-31 07:54:50; if the
parameter is missing, the default value of 6
days is set.
The maximum validity of a transaction is 31
days (if the parameter value is set further
forward than 31 days, the validity time will be
reduced accordingly).
E.g. a transaction initiated at 2020-05-01
08:00:00, with ValidityTime = 2021-05-01
08:00:00, will receive validity until
2020-06-01 08:00:00.(Time in CET)

16

Hash
order name required type description

34 LinkValidityTime NO string{1,19}

Link expiry time; when this time is exceeded,
the link becomes inactive, but this does not
affect the deposit time; example value:
2014-10-30 07:54:50; please ensure that the
transaction time is adjusted to the link expiry
time (you may also need to enter the
parameter ValidityTime, to extend its
standard validity).

nd. Hash YES string{1,128}
Value of message digest function calculated
as described in section Security of
transactions.

Method of initiating a transaction

The transaction is initiated by sending an HTTPS call a combination of the above parameters to the
address of the online payment system established during registration of the service.

IMPORTANT: The number of transactions launched by the Partner in one minute can be a
maximum of 100, unless the Partner and AP agree on a higher limit as part of the concluded
agreement.

Example of starting a transaction:

Address:

https://{gate_host}/path

Parameters:

ServiceID=2

OrderID=100

Amount=1.50

 Hash=2ab52e6918c6ad3b69a8228a2ab815f11ad58533eeed963dd990df8d8c3709d1

Sending a message without all required parameters (ServiceID, OrderID, Amount and Hash) or
containing incorrect their values, will cause the payment process to stop with a transaction error code
and a brief error message (no return to the Partner Service page).

17

IMPORTANT! The parameter pair ServiceID and OrderID uniquely identifies the transaction. It
is not permissible for the value of the OrderID parameter to be repeated throughout the entire
period of service provided by the System to a single Partner Service (ServiceID).

The optional parameter GatewayID is used to specify the Payment Channel through which the
payment is to be made. This allows the Payment Channels selection screen to be transferred to the
Service. The current list of Payment Channel IDs, including logos, is available via the gatewayList
method.

The transaction initiation message can be transmitted in the background, i.e. without redirecting the
user to the Online Payment System. In this model, the selection of the Payment Channel itself is also
made by the Customer on the Partner Service.

Redirection to Partner Site

Description of redirection to Partner Site

Immediately upon completion of the transaction authorisation by the Customer, he/she is redirected
from the Payment Channel site to the Payment System online site, where the Customer is
automatically redirected to the Partner Service. The redirection is implemented by sending an HTTPS
request (using the GET method) to a predetermined return address on the Partner Service. The
protocol is case-sensitive in both names and parameter values.

List of redirection parameters for the Partner Site

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 OrderID YES string{1,32}
The transaction identifier assigned in the Partner
Service and communicated at the start of the
transaction.

nd. Hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

Example of a message redirecting the Customer from the online payment system to the Partner Site

https://shop_name/return_page?ServiceID=123458&OrderID=123402816&Hash=5432d69a66d721b2f5
f785432bf5a1fc1b913bdb3bba465856a5c228fe95c1f8

Instant notifications (ITN)

18

Description of instant notifications

The System transmits notifications of changes in the status of a transaction as soon as it receives
such information from the Payment Channel, and the message always relates to a single transaction.

NOTE: The domain must be public and accessible via the System. The domain must be secured
by a valid certificate issued by a public certification authority (Certificate authority) The server
must present a complete certificate chain (Chain of Trust) Communication must be based on
TLS protocol version 1.2 or 1.3 *Other forms of connection security, e.g. VPN, mTLS must be
individually agreed with the person responsible for implementation.

Example:

https://shop_name/status_receive

Notification of a change in the status of an input transaction consists of the sending by the System of
an XML document containing the new transaction statuses.

The document is sent via HTTPS (default port 443) - using the POST method, as an HTTP parameter
with the name transactions. This parameter is stored using the Base64 transport encryption
mechanism.

Document format (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transactionList>
 <serviceID>ServiceID</serviceID>
 <transactions>
 <transaction>
 <orderID>OrderID</orderID>
 <remoteID>RemoteID</remoteID>
 <amount>999999.99</amount>
 <currency>PLN</currency>
 <gatewayID>GatewayID</gatewayID>
 <paymentDate>YYYYMMDDhhmmss</paymentDate>
 <paymentStatus>PaymentStatus</paymentStatus>
<paymentStatusDetails>PaymentStatusDetails</paymentStatusDetails>
 </transaction>
 </transactions>
 <hash>Hash</hash>
 </transactionList>

NOTE: A transactions node can only contain one transaction node (so the notification is
always for one transaction). The values of the orderID and amount elements relating to each
transaction are identical to the values of the corresponding fields provided by the Partner
Service at the start of the respective transaction. The exception to this is models where the
commission is added to the transaction amount. In such cases, the amount value in the ITN is

19

increased by this commission. The validation of amounts can then be carried out on the basis of
the optional ITN field startAmount. However, this field must be requested during integration.

List of returned parameters for instant notifications

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10}

The Partner Service ID, assigned during
service registration, uniquely identifies
the Partner Service in the Online
Payment System. Numbers are
acceptable.

2 orderID YES string{1,32}
The transaction identifier assigned in
the Partner Service and communicated
at the start of the transaction.

3 remoteID YES string{1,20}

Alphanumeric transaction identifier
assigned by the online payment
system. It is worth storing it with the
order for further processing (for
multiple transactions with the same
OrderID, for returns, etc.).
Such a situation may occur, for
example, if the Customer changes the
Payment Channel, calls up the same
transaction start again from the
browser history, etc. The system allows
blocking such cases, but the option is
not recommended (it would not be
possible to pay for an abandoned
transaction).

5 amount YES amount
Transaction amount. A dot '.' is used as
decimal separator. Format: 0.00;
maximum length: 14 digits before the
dot and 2 after the dot.

6 currency YES string{1,3} Currency of transaction.

7 gatewayID NO string{1,5}
Identifier of the Payment Channel
through which the Customer settled the
payment.

8 paymentDate YES string{14}
The time when the transaction was
authorised, transmitted in the format
YYYYMMDDhhmmss. (CET time)

20

Hash
order name required type description

9 paymentStatus YES enum

Transaction authorisation status, takes
values (description of status changes
further on):
• PENDING - transaction initiated.
• SUCCESS - correct authorisation of
the transaction, the Partner Service will
receive the funds for the transaction -
goods/services can be issued.
• FAILURE - the transaction was not
completed correctly.

10 paymentStatusDetails NO string{1,64} Detailed transaction status, value can
be ignored by the Partner Service.

nd. hash YES string{1,128}

Value of message digest function
calculated as described in section
Security of transactions. Mandatory
verification of compliance of the
calculated abbreviation by the
Service.

TIP: Element hash (message) is used to authenticate
the document. For a description of how the hash is calculated, see section Security of
transactions.

Response to the instant notification

In response to the notification, an HTTP status of 200 (OK) is expected and
a text in XML format (unencoded Base64), returned by the
Partner Service in the same HTTP session, containing an acknowledgement of receipt
of the transaction status.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>ServiceID</serviceID>
 <transactionsConfirmations>
 <transactionConfirmed>
 <orderID>OrderID</orderID>
 <confirmation>Confirmation</confirmation>
 </transactionConfirmed>
 </transactionsConfirmations>
 <hash>Hash</hash>
 </confirmationList>

Description of the confirmation fields for immediate notifications

21

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID derived from the message.

2 orderID YES string{32}
The transaction identifier, assigned in the Partner
Service and communicated in the start of the
transaction, derived from the message.

3 confirmation YES string{1,25}

The element is used to convey the status of
verification of the authenticity of the transaction
by the Partner Service. The value of the element
is determined by checking the correctness of the
values of the serviceID and currency
parameters, comparing the values of the
orderID and amount fields in the notification
message and in the message initiating the
transaction, and verifying the consistency of the
calculated hash from the message parameters
with the value passed in the message hash field.
Exceptions are models where the commission is
added to the transaction amount. In such cases,
the amount value in the ITN is increased by this
commission. Amount validation can then be
carried out on the basis of the optional ITN field
startAmount. However, this field must be
requested during integration.
Two values are provided for the element
confirmation:
• CONFIRMED - the parameter values in both
messages and the hash parameter match - the
transaction is genuine;
• NOTCONFIRMED - the values in the two
messages are different or a hash mismatch -
transaction not authentic;

nd. hash YES string{1,128}

The hash element (in the message response) is
used to authenticate the response and is
calculated from the values of the response
parameters. For a description of how the hash is
calculated, see the section Security of
transactions.

In the absence of a correct response to the sent notifications, the System will make further
attempts to communicate the latest status of the transaction after the specified time has
elapsed. The Partner Service should perform its own business logic (e.g. confirmation email),
only after the first <message about a given payment status.

TIP: It is worth taking a look at Message re-transmission scheme ITN/ISTN/IPN/RPAN/RPDN.

22

Detailed description of the behaviour and change of payment statuses (paymentStatus)

The customer's choice of payment method will send a status of PENDING each time. In the
subsequent ITN message, the system will provide the status SUCCESS or FAILURE.

NOTE The PENDING status will not be sent if:

the Customer abandons or returns from the payment method list screen without selecting a
specific method. In this case, the FAILURE status will be sent immediately. The PENDING status
will not appear as the customer has not started the payment process.
The final status (SUCCESS or FAILURE) will be delivered before the ITN is sent with the status
PENDING.

For a single transaction (with unique parameters OrderID and RemoteID), there can be no change of
status from SUCCESS to PENDING or SUCCESS to FAILURE.

In any case, there may be a change of detail status - paymentStatusDetails (subsequent messages
about a change of detail status are for information only and should not lead to a repeat of the paid
service/product shipment, etc.).

In special cases of use, there may be a change of status:

a) FAILURE to SUCCESS (e.g. after an AP consultant has approved a transaction paid with an
incorrect amount. Such behaviour requires special business arrangements and is not enabled by
default),

b) SUCCESS to FAILURE (e.g. after triggering multiple transactions with the same OrderID but
different RemoteID). Such a case occurs when a Customer initiates multiple payments with the same
OrderID (e.g. the Customer changes his decision on which Payment Channel he wants to pay the
transaction with). Each of the payments initiated by him generates ITNs and the individual
transactions should be distinguished by the RemoteID parameter. As the time of receipt of the
FAILURE status can vary greatly, it may happen that such a status is received after SUCCESS has
been received (of course with a different RemoteID). In such a case, the ITN message should be
acknowledged, but should not entail the cancellation of the transaction status in the Partner's system.

Handling transaction statuses from ITN - Simplified model

In a model where it is not necessary to notify the Customer by email/sms of non-SUCCESS statuses,
the amount of information
stored in the Service database and the tracking of RemoteID changes can be reduced.

All You need is:

for statuses other than SUCCESS, each time confirm the ITN with the correct response
structure, CONFIRMED status and correctly counted Hash field value,

23

in the event of receipt of First status SUCCESS, also add the update of the status, its time and
RemoteID in the Service database and the execution of business processes (notifications to the
Customer of status changes, execution of paid service/product shipment, etc.),

in the event of a subsequent SUCCESS status, each time confirm the ITN with a correct
response structure, CONFIRMED status and correctly counted Hash field value, without
updating the Service database and without business processes.

Handling transaction statuses from ITN - full model

In a model where the entire history of status changes of transactions and/or notification to the
customer of major status changes
of transactions is needed, logic approximating the following description should be used.

Security of transactions

Description of transaction security

The Online Payment System uses several mechanisms to increase
the security of transactions carried out using it. Transmission between all parties to a transaction is
carried out using a
secure connection based on the TLS protocol with a 2048-bit key.

In addition, the communication is secured by a hash function calculated from the values of the
message fields and the shared key (the shared key itself is stored in the System in an encrypted form

24

using the AES-ECB algorithm).

The SHA256 or SHA512 algorithm is used as the hash function (method determined at the stage of
configuring the respective Partner Service in the online payment system). The default function is
SHA256.

Calculation of the value of a hash function

Description of how to calculate the value of the hash function and examples of calculations for basic
messages.

NOTE: The examples do not take into account all possible optional fields, so if such fields are
present in a particular message, they should be included in the abbreviated function in an order
consistent with the number next to the field.

Calculation of hash function value - Hash field

The value of the hash function, used to authenticate the message, is calculated from a string
containing the concatenated fields of the message (concatenation of fields). Field values are
concatenated, without parameter names, and a separator (in the form of the | character) is inserted
between
consecutive (non-empty) values. The order in which the fields are glued together follows the order of
their occurrence in the list of parameters in the documentation.

IMPORTANT! If there is no optional parameter in the message or in the case of an empty
parameter value, do not use the separator!

To the string created in this way, a key is appended at its end, shared between the Partner Service
and the online payment system. From the string created in this way, the value of the hash function is
calculated and constitutes
the value of the message Hash field.

Hash = function(field_value_1_message + "|" + field_value_2_message + "|" + ... + "|" +
field_value_n_message + "|" + shared_key);

Example calculation of the hash function value at the start of a transaction

Partner Service Data:
ServiceID = 2

shared_key = 2test2

Gateway address https://{gate_host}/sciezka

a. Start of transaction

25

POST call without basket, with parameters:

ServiceID=2
OrderID=100
Amount=1.50

Hash=2ab52e6918c6ad3b69a8228a2ab815f11ad58533eeed963dd990df8d8c3709d1

where

Hash=SHA256(“2|100|1.50|2test2”)

b. Start of transaction. POST call with the shopping cart.

TIP: Option discussed in detail in section Product basket.

ServiceID = 2

OrderID = 100

Amount = 1.50

Product (described below)

shared_key = 2test2

Product basket (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <productList>
 <product>
 <subAmount>1.00</subAmount>
 <params>
 <param name="productName" value="Nazwa produktu 1" />
 </params>
 </product>
 <product>
 <subAmount>0.50</subAmount>
 <params>
 <param name="productType" value="ABCD" />
 <param name="ID" value="EFGH" />
 </params>
 </product>
 </productList>

26

After encoding with the base64 function, we get the value of the Product parameter:

PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48cHJvZHVjdExpc3Q+PHByb2R1Y3Q+PHN1YkFt
b3VudD4xLjAwPC9zdWJBbW91bnQ+PHBhcmFtcz48cGFyYW0gbmFtZT0icHJvZHVjdE5hbWUiIHZhbHVlPSJOYXp3
YSBwcm9kdWt0dSAxIiAvPjwvcGFyYW1zPjwvcHJvZHVjdD48cHJvZHVjdD48c3ViQW1vdW50PjAuNTA8L3N1YkFt
b3VudD48cGFyYW1zPjxwYXJhbSBuYW1lPSJwcm9kdWN0VHlwZSIgdmFsdWU9IkFCQ0QiIC8+PHBhcmFtIG5hbWU9
IklEIiB2YWx1ZT0iRUZHSCIgLz48L3BhcmFtcz48L3Byb2R1Y3Q+PC9wcm9kdWN0TGlzdD4=

The Hash value is calculated as follows:

Hash=SHA256(“2|100|1.50|PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48cHJvZHVjdExp
c3Q+PHByb2R1Y3Q+PHN1YkFtb3VudD4xLjAwPC9zdWJBbW91bnQ+PHBhcmFtcz48cGFyYW0gbmFtZT0icHJvZHVj
dE5hbWUiIHZhbHVlPSJOYXp3YSBwcm9kdWt0dSAxIiAvPjwvcGFyYW1zPjwvcHJvZHVjdD48cHJvZHVjdD48c3Vi
QW1vdW50PjAuNTA8L3N1YkFtb3VudD48cGFyYW1zPjxwYXJhbSBuYW1lPSJwcm9kdWN0VHlwZSIgdmFsdWU9IkFC
Q0QiIC8+PHBhcmFtIG5hbWU9IklEIiB2YWx1ZT0iRUZHSCIgLz48L3BhcmFtcz48L3Byb2R1Y3Q+PC9wcm9kdWN0
TGlzdD4=|2test2”)

Example calculation of the value of a hash function when returning a customer to the Partner Site

Partner Service Data:

ServiceID = 2

shared_key = 2test2

<https://shop_name/strona_powrotu?ServiceID=2>&OrderID=100&Hash=254eac9980db56f425acf8a9
df715cbd6f56de3c410b05f05016630f7d30a4ed

gdzie

Hash=SHA256("2|100|2test2")

Example calculation of the value of a hash function in an ITN message

Partner Service Data:

serviceID = 1

shared_key = 1test1

ITN (XML)

 <?xml version="1.0" encoding="UTF-8"?>

27

 <transactionList>
 <serviceID>1</serviceID>
 <transactions>
 <transaction>
 <orderID>11</orderID>
 <remoteID>91</remoteID>
 <amount>11.11</amount>
 <currency>PLN</currency>
 <gatewayID>1</gatewayID>
 <paymentDate>20010101111111</paymentDate>
 <paymentStatus>SUCCESS</paymentStatus>
 <paymentStatusDetails>AUTHORIZED</paymentStatusDetails>
 </transaction>
 </transactions>
 <hash>a103bfe581a938e9ad78238cfc674ffafdd6ec70cb6825e7ed5c41787671efe4</hash>
 </transactionList>

where

Hash=SHA256(“1|11|91|11.11|PLN|1|20010101111111|SUCCESS|AUTHORIZED|1test1”)

Example response (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>1</serviceID>
 <transactionsConfirmations>
 <transactionConfirmed>
 <orderID>11</orderID>
 <confirmation>CONFIRMED</confirmation>
 </transactionConfirmed>
 </transactionsConfirmations>
 <hash>c1e9888b7d9fb988a4aae0dfbff6d8092fc9581e22e02f335367dd01058f9618</hash>
 </confirmationList>

where value

Hash=SHA256("1|11|CONFIRMED|1test1");

Example calculation of the hash function value in querying the list of Payment Channels

Partner Service Data:

ServiceID = 100

MessageID = 11111111111111111111111111111111

Currencies = PLN,EUR

28

Language = PL

shared_key = 1test1

where the value

Hash=SHA256('100|11111111111111111111111111111111|PLN,EUR|PL|1test1')

The response to the above call may be as follows (note: no hash field in the response):

{
 "result": "OK",
 "errorStatus": null,
 "description": null,
 "gatewayGroups": [
 {
 "type": "PBL",
 "title": "Przelew internetowy",
 "shortDescription": "Select the bank from which you want to order the
payment",
 "description": null,
 "order": 1,
 "iconUrl": null
 },
 {
 "type": "BNPL",
 "title": "Buy now, pay later",
 "shortDescription": "Buy now, pay later",
 "description": null,
 "order": 2,
 "iconUrl": null
 }
],
 "serviceID": "10000",
 "messageID": "2ca19ceb5258ce0aa3bc815e80240000",
 "gatewayList": [
 {
 "gatewayID": 106,
 "name": "PBL test payment",
 "groupType": "PBL",
 "bankName": "NONE",
 "iconURL": "https://testimages.autopay.eu/pomoc/grafika/106.gif",
 "state": "OK",
 "stateDate": "2023-10-03 14:35:01",
 "description": "Test payment",
 "shortDescription": null,
 "descriptionUrl": null,
 "availableFor": "BOTH",
 "requiredParams": ["Nip"],
 "mcc": {
 "allowed": [1234, 9876],
 "disallowed": [1111]
 },
 "inBalanceAllowed": true,
 "minValidityTime": null,
 "order": 1,
 "currencies": [
 {
 "currency": "PLN",

29

 "minAmount": 0.01,
 "maxAmount": 5000.00
 }
],
 "buttonTitle": "Pay"
 },
 {
 "gatewayID": 701,
 "name": "Pay later with Payka",
 "groupType": "BNPL",
 "bankName": "NONE",
 "iconUrl": "https://testimages.autopay.eu/pomoc/grafika/701.png",
 "state": "OK",
 "stateDate": "2023-10-03 14:37:10",
 "description": "<div class=\"payway_desc\"><h1>Cost details</h1><p>Pay later
- one-off up to 45 days (...). Offer details at: <a href="?r="https://payka.pl\"
target=\"_blank\">Payka.pl</p></div>",
 "shortDescription": "Pay later - in one go up to 45 days or in several equal
instalments",
 "descriptionUrl": null,
 "availableFor": "B2C",
 "requiredParams": [],
 "mcc": null,
 "inBalanceAllowed": false,
 "minValidityTime": 60,
 "order": 2,
 "currencies": [
 {
 "currency": "PLN",
 "minAmount": 49.99,
 "maxAmount": 7000.00
 }
],
 "buttonTitle": "Pay"
 }
]
}

Additional extensions

Alternative transaction initiation models

Card pre-authorisation

General description of the operation of the card pre-authorisation service

Card pre-authorisation support provides the functionality of blocking funds on the customer"s card for
a certain (e.g. predetermined during the establishment of the blockade) period of time and then
making a debit. A special case is when the block is removed without any amount being deducted (e.g.
the service to the customer has not been performed).

All these operations (blocking of funds, debiting, withdrawal of blocking) should be ordered via the API
of the Autopay Payment System. If there is no debit order to the card during the validity period of the
transaction setting up the blockade, the System will release the funds, notifying you with a standard
Transaction Status Change (ITN) message.

30

Other operations (successful debit, placing a block on the card and subsequent debit) also result in
the sending of an ITN message. This message is the only binding information about a change in the
status of a transaction and (used together with the service transactionStatus; see section Enquiry
about the status of a transaction), helps to handle the transaction without breaking the session with
the user (even in the event of various network problems). Synchronous operation acknowledgements
(node confirmation, they serve only to present preliminary information about the order).

Steps in a card pre-authorisation transaction

Blocking at the request of the Partner

It is possible to distinguish between 3 basic ways of placing a lock on a card:

a) Establishing a block during the authorisation of a one-off payment (See Scheme A for
Preauthorisation). The customer fills in the card format, after the transaction has been started, in
which the Partner indicates in the start parameters:

- card payment channel (GatewayID=1500) and

- the desire to secure funds rather than encumber (Hold=true)

b) Assumption of a lock when initiating an automatic payment (card enrolment in the Service or
Mobile Application) (See Scheme B for Preauthorisation)).

TIP: entire cycle and all automatic payment events according to the
documentation, modified by the moment when the card is actually debited and the
automatic payment is set up - in the pre-authorisation model, it is the
transactionClear operation that causes these events.

The customer fills in the card format, once the transaction has been started, in which the
Partner indicates in the start parameters:

- card payment channel (GatewayID=1503),

- the fact of accepting the rules of the automatic payment service
provided by AP (RecurringAcceptanceState=ACCEPTED, lub po or after the business
arrangements PROMPT/FORCE)

- the choice to initialise an automatic payment with a potential debit to the card
(RecurringAction=INIT_WITH_PAYMENT)

- the desire to secure funds rather than encumber (Hold=true)

c) Establishing a lock using a previously saved card (see Scheme C for Preauthorisation).

31

TIP: The entire cycle and all automatic payment events according to the
documentation, modified by the moment when the card is actually debited and the
automatic payment is set up - in the pre-authorisation model, it is the
transactionClear operation that causes these events.

The customer does not fill in the card form, but a backend (without redirection) pre-
transaction takes place in which the partner indicates in the start parameters:

- card payment channel (GatewayID=1503)

- indication of a previously added card (ClientHash from RPAN)

- choice of automatic payment method (RecurringAction=MANUAL)

- the desire to secure funds rather than encumber (Hold=true)

Each of these methods of establishing a blockade results in an ITN message, the status of which
indicates the result of the transaction authorisation. In addition to the standard
statuses, in the case of blocking of funds, the System may provide in the ITN status
paymentStatus=ON_HOLD, which confirms the establishment of a block of funds on the customer's
card. In addition, the ITN will, as standard,
contain a global transaction identifier (remoteID), which will be required for subsequent loading of
the established blockade.

Card debit at the Partner's request

Description of the card charge at the partner's request

Once the lock has been placed, a debit order can be placed by the Partner
on a previously authorised card (See Scheme D for Preauthorisation).For
this purpose, the dedicated service must be called up: transactionClear
(https://{gate_host}/webapi/transactionClear) with the corresponding parameters. All parameters are
passed via the POST method (Content-Type: application/x-www-form-urlencoded). The
protocol is case-sensitive in both parameter names and values. The
values of the passed parameters should be encoded in UTF-8.

Description of available parameters for card debit at the Partner's request

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 MessageID YES string{32}

Pseudo-random message identifier with a length
of 32 Latin alphanumeric characters (e.g. on a
UID basis), the field value must be unique and
indicate a specific payment order on the Partner
Service.

32

Hash
order name required type description

3 RemoteID YES string{1,20}

The alphanumeric transaction identifier assigned
by the System and transmitted to the Partner in
the ITN message of the incoming transaction. Its
indication will result in a debit to the card
authorized in the transaction of the indicated
RemoteID, if it is in a blocked state (status
ON_HOLD).

4 Amount YES amount
Amount of the debit (must not be greater than
the amount of the blockade); a dot is used as
decimal separator - '.' Format: 0.00.

5 Products YES string{1,10000}

Information about the products included in the
transaction, transmitted as Base64 transport
protocol encoded XML.
The structure must include all products specified
in the pre-authorisation, but can be simplified
(only productID and idBalancePoint will be taken
into account to identify the product whose
amount is to be updated, and the new amount
should be specified in subAmount).
/Required for multiple products specified in
the pre-authorisation.

nd. Hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of
the calculated abbreviation by the Partner
Service.

Confirmation of transaction for card debit at Partner's request

For correct querying, a defined HTTP header with appropriate content must be
sent along with the passed parameters. The attached
header should be named 'BmHeader' and have the following
value 'pay-bm, in its entirety it should look as follows 'BmHeader: pay-bm'. In case of a valid message,
an XML-formatted text is returned (in the same HTTP session), containing confirmation of the
operation or a description of the error.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balancePayoff>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <remoteOutID>RemoteOutID</remoteOutID>
 <hash>Hash</hash>
 </balancePayoff>

Confirmation structure (XML)

33

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balancePayoff>
 <balancePointID>BalancePointID</balancePointID>
 <messageID>MessageID</messageID>
 <remoteOutID>RemoteOutID</remoteOutID>
 <hash>Hash</hash>
 </balancePayoff>

Description of parameters to be returned for card debit at the partner's request

Hash
order name required type description

1 serviceID YES string{1,32}
Partner Service ID. Derived from a method
request.
Required for confirmation=CONFIRMED.

2 messageID YES string{1,20}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based
on UID). Derived from the method request.
Required for confirmation=CONFIRMED.

3 confirmation YES string{1,100}

Order acknowledgement status.
It can take two values:
- CONFIRMED – the operation was successful.
NOTE: This does not mean that the load is
executed! The system will asynchronously
deliver the ITN with
paymentStatus=SUCCESS. - NOTCONFIRMED
– operation failed.

4 reason NO string{1,1000} Explanation of the details of the processing of
the request..

nd. hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of
the calculated abbreviation by the Partner
Service.
Required for confirmation=CONFIRMED.

Release of blocking at the request of the Partner

Once the lock has been established, it can be ordered by the Partner to release it without any
deduction of any funds (See Scheme E for Preauthorisation)). For this operation, use the service
releaseHold (See Cancellation of an unpaid transaction). Upon successful initiation of a lock release
(correct response to a cancel
transaction), the System will asynchronously provide an ITN with the paymentStatus=FAILURE and
paymentStatusDetails=CANCELLED.

Release of blocking after overdue transactions

In the event of Partner's inactivity (after the lock has been set up) for a predetermined

34

period of validity, the transaction is released by the System (without
deducting any funds) (See Scheme F for Preauthorisation). The system will cancel the transaction,
remove the lock and provide the ITN with the paymentStatus=FAILURE and
paymentStatusDetails=CANCELLED.

Schemes for Preauthorisation

Scheme A for Preauthorisation: Setting up a block during the authorisation of a one-off payment

Scheme B for Preauthorisation: Assumption of a block during the initiation of an automatic payment (card
enrolment)README.md

https://developers.autopay.pl/?r=README.md

35

Scheme C for Preauthorisation: Setting up a lock using a previously stored card

Scheme D for Preauthorisation: Partner's order to debit a previously authorised card

Scheme E for Preauthorisation: Order by Partner to release the lock (without deducting funds)

36

Scheme F for Preauthorisation: Release of lock by the Scheme (without deduction of funds)

Pre-transaction

Pre-transaction description

Pre-transaction extends the standard transaction initiation model by handling specific needs:

order a payment link on the basis of the submitted parameters

debit from the customer (if no additional authorisation is required by the Customer)

37

verify the correctness of the payment link before the Customer is redirected to the System - the
call results in the validation of the parameters and configuration of the System

shorten the payment link - instead of several/several parameters, link is shortened to two
identifiers

hiding the data of sensitive parameters of the transaction link - the pre-transaction takes place
in the backend, and the link to continue the transaction does not contain sensitive data, but
only identifiers of the continuation of

use of the mobile SDK in a mixed variant - the start of the transaction is performed by the
mobile app backend, rather than the SDK itself using the transaction token

The specific use cases of Pre-transaction, are loads:

BLIK 0\ In order to use this service, you must provide GatewayID=509 and pass the
transaction authorisation code in the parameter AuthorizationCode.

BLIK 0 OneClick

Charges for "Automatic payment"
In order to use this service, you must provide one of the GatewayID=509 i
gatewayType="Płatność automatyczna" and the necessary parameters.

Authorisations through Visa wallets
In order to use this service, you must provide GatewayID=1511 and pass the encoded token
in the parameter PaymentToken. In the absence of a token, authorisation will take place on
the System website.

Authorisations through Google Pay wallets

NOTE: The service allows the card stored in the customer's wallet to be debited without
redirection to the System. Often, additional authorisation is enforced in the form of 3DS (default
behaviour of the test environment, which can be reconfigured).

In the Whitelabel model, integrate as described and then provide GatewayID=1512 and the
encoded token in the PaymentToken parameter. If there is no token (or a model other than
Whitelabel), simply enter GatewayID=1512 - authorisation will take place on the System website.

38

Authorisations through Apple Pay wallets
To use this service, you will need to enter GatewayID=1513. Authorisation will take place on
the System website.

Authorisation through the native format of the mobile SDK

NOTE: The service allows the card to be debited, the details of which are provided on the
secure card format of the SDK, and the start of the transaction itself is performed by the
backend of the mobile application.

In addition to the relevant GatewayID - 1500 for a one-time payment or 1503 for activation of an
automatic payment (and other parameters) - the PaymentToken obtained from the SDK and the
parameter WalletType=SDK_NATIVE (description in section Starting a transaction with additional
parameters)

Calling a Pre-transaction

A required element in the case of a pre-transaction is to send backend (using e.g. cURL) the standard
start message of the transaction (see Start of the transaction), with a 'BmHeader' of value: 'pay-bm-
continue-transaction-url':

Example of a header

'BmHeader: pay-bm-continue-transaction-url')

In addition, it is recommended that the parameter CustomerIP (for claims, reporting purposes).

Example of Pre-transaction start-up (PHP)

 $data = array(
 'ServiceID' => '100047',
 'OrderID' => ‘20161017143213’,
 'Amount' => '1.00',
 'Description' => 'test bramki',
 'GatewayID' => '0',
 'Currency' => 'PLN',
 'CustomerEmail' => 'test@bramka.pl',
 'CustomerIP' => '127.0.0.0',
 'Title' => 'Test title',
 'Hash' => 0c5ca136e8833e40efbf42a4da7c148c50bf99f8af26f5c9400681702bd72056
);

 $fields = (is_array($data)) ? http_build_query($data) : $data;

 $curl = curl_init('https://{gate_host}/test_ecommerce');
 curl_setopt($curl, CURLOPT_HTTPHEADER, array('BmHeader: pay-bm-continue-
transaction-url'));
 curl_setopt($curl, CURLOPT_POSTFIELDS, $fields);
 curl_setopt($curl, CURLOPT_POST, 1);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, true);
 $curlResponse = curl_exec($curl);
 $code = curl_getinfo($curl, CURLINFO_HTTP_CODE);

39

 $response = curl_getinfo($curl);
 curl_close($curl);

 echo htmlspecialchars_decode($curlResponse);

Response to Pre-transaction - link to follow up on transaction

In the case of correct validation of the parameters (and configuration) and
the need for the customer to perform an additional action (selecting a
payment channel - if specified GatewayID=0, execution/confirmation transfer, entering CVC/CVV
code, execution of 3DS) - an XML with a link to continue the transaction will be returned.

Example of a transaction continuation link file (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transaction>
 <status>PENDING</status>
 <redirecturl>
 https://{gate_host}/payment/continue/96VSD39Z6E/L6CGP5BH
 </redirecturl>
 <orderID>20180824105435</orderID>
 <remoteID>96VSD39Z6E</remoteID>
 <hash>
 1c6eae2127f0c3f81fbed3b6372f128040729a4d4e562fb696c22e0db68dbbe1
 </hash>
 </transaction>

Pre-transaction object

The transaction object represents the receipt or withdrawal of funds from an AP, such as a
completed purchase or refund.

Transaction object attributes for Pre-transaction

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 status YES string{1,32} Transaction status. In this case the constant
PENDING.

2 redirecturl YES string{1,100} Address to continue a transaction initiated by a
pre-transaction message.

3 orderID YES string{1,32}
The transaction identifier assigned in the Partner
Service and communicated at the start of the
transaction.

4 remoteID YES string{1,20} The unique transaction identifier assigned in the
AP System.

40

Hash
order name required type description

nd. hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

Response to Pre-transaction - no continuation of transaction

In the event of an invalid validation or unsuccessful load no continuation link is generated. A text in
XML format is returned (in the same HTTP session) indicating the processing status of the request.

Example of request processing status (XML)

<?xml version="1.0" encoding="UTF-8"?>
<transaction>
 <orderID>OrderID</orderID>
 <remoteID>RemoteID</remoteID>
 <confirmation>ConfStatus</confirmation>
 <reason>Reason</reason>
 <blikAMList>
 <blikAM>
 <blikAMKey>Klucz1</blikAMKey>
 <blikAMLabel>Etykieta1</blikAMLabel>
 </blikAM>
 <blikAM>
 <blikAMKey>Klucz2</blikAMKey>
 <blikAMLabel>Etykieta2</blikAMLabel>
 </blikAM>
 </blikAMList>
 <paymentStatus>PaymentStatus</paymentStatus>
 <hash>Hash</hash>
</transaction>

Pre-transaction outcome

Parameters returned for the result of the Pre-transaction.

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 orderID YES string{1,32}
The transaction identifier assigned in the
Partner Service and communicated at the
start of the transaction.
Required for confirmation=CONFIRMED.

2 remoteID YES string{1,20}
The unique transaction identifier assigned in
the AP System.
Required for confirmation=CONFIRMED.

41

Hash
order name required type description

3 confirmation YES string{1,100}

Order acknowledgement status.
It can take two values:
- CONFIRMED – the operation was
successful.
NOTE: Does not indicate success.
- NOTCONFIRMED – operation failed.

4 reason NO string{1,1000}
Explanation of the reason for rejection of the
order (for confirmation=NOTCONFIRMED), if
available.

5 blikAMList NO string{1,10000}
List of available mobile bank applications
under BLIK 0 OneClick option (for
confirmation=NOTCONFIRMED and
reason=ALIAS_NONUNIQUE).

Format for blikAMList:
 <blikAM>
 <blikAMKey>Key1</blikAMKey>
 <blikAMLabel>Label1</blikAMLabel>
 </blikAM>
 …
 <blikAM>
 <blikAMKey>KeyN</blikAMKey>
 <blikAMLabel>LabelN</blikAMLabel>
 </blikAM>

6 paymentStatus NO enum

Transaction authorisation status, takes
values:
- PENDING – transaction initiated
- SUCCESS – correct authorisation of
transactions
- FAILURE – transaction not completed
correctly

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. Mandatory verification of
compliance of the calculated
abbreviation by the Service.
Required for confirmation=CONFIRMED.

Correct validation of parameters

If the parameters (and configuration) are validated correctly and there is no need for the customer to
perform an additional action - a confirmation of the load order is returned.

This is the case where the data is sufficient to make a debit for the payment channel in question, for
example: BLIK 0 without
the required BLIK code (nor indication of the bank's mobile app alias), recurring payment, OneClick
Card payment without the required CVC/CVV/3DS.

Result

42

confirmation=CONFIRMED

Incorrect parameter validation

In the event of incorrect parameter (and configuration) validation - an error is returned.

Result

confirmation=NOTCONFIRMED

An error may also be returned in the event of a synchronous response from the Payment Channel
(e.g. an error specific to an attempt to initialise a BLIK automatic payment, i.e. reason=
RECURRENCY_NOT_SUPPORTED).

NOTE: An error may also be returned in the event of a synchronous response from a Payment
Channel (e.g. an error specific to an attempt to initialise a BLIK automatic payment, i.e.
reason=RECURRENCY_NOT_SUPPORTED). Another known case is also the validation error of the
address given in the start parameter CustomerEmail (INVALID_EMAIL).

Handling of responses for Transactions

Confirmation
status

(confirmation)
Payment status
(paymentStatus) Description of the Partner's behaviour

CONFIRMED SUCCESS

Transaction accepted for processing, status correct.
Do not retry debit
The payment confirmation can be displayed, but
business processes should be paused until the
confirmation in the ITN (this will be sent once the AP
has received the correct transaction status from the
Payment Channel).

CONFIRMED FAILURE

Transaction accepted for processing, status invalid.
You can retry debit with the same OrderID. Once the
AP has received the status of the transaction from the
Payment Channel, an ITN message will be sent.
NOTE: It is not possible to retry transaction with the
same OrderID if, during integration, a model is
agreed for the System to block transaction starts with
the same OrderID. By default, the Partner's
preservation of the uniqueness of the OrderID is only
a recommendation and is not subject to verification in
transaction starts.

CONFIRMED PENDING
A transaction has been accepted for processing, but
its status is not yet known. Do not retry the load.
Further handling as in the case of timeout.

NOTCONFIRMED - Transaction not ordered (reason indicated in reason
node). You can retry the load with the same OrderID.

43

Confirmation
status

(confirmation)
Payment status
(paymentStatus) Description of the Partner's behaviour

Timeout (or other
response such as
invalid structure,
missing required
fields, other
confirmation status)

-

Wait for the ITN until the expiry date of the transaction
(a short expiry time, e.g. 15 min, is recommended for
this purpose), informing the customer of the result in a
separate process (email/sms). After this time, it is
recommended to query the transaction status
(transactionStatus). If the method returns no
registered transaction (or FAILURE payment statuses
alone), the debit order can be retried with the same
OrderID.

Alternatively, you can try to cancel the transaction,
thus speeding up the process of obtaining the final
transaction status and possibly the process of
renewing the transaction start message. To do so, use
the transaction cancellation service
(transactionCancel) and confirm its operation by
querying the transaction status (as described above).

Requesting transfer details for a Fast Transfer transaction

Description of ordering transfer data in a Fast Transfer transaction

Fast Transfer is a form of payment that requires the Customer to independently rewrite the transfer
data provided by the System. What type a given Payment Channel is, is told by the gatewayType
parameter in response to calling the service "Querying the list of currently available
Payment Channels". The transfer data can be displayed to the Customer:

on the AP website (execution of the transaction based on the standard transaction start model
described in part Start of the transaction)

on the Partner's site (transaction processing without redirecting the customer to the AP site is
described below)

Calling

For the correct transmission of the message, a standard transaction start message must be sent
backend (e.g.
cURL), with a header 'BmHeader' of value: 'pay-bm' (In its entirety, the header should look as follows
'BmHeader: pay-bm'). If the header is incorrectly defined or missing, the message will be misread. In
addition, it is recommended to pass the CustomerIP parameter as described under User IP (needed for
complaint, reporting processes) and required to pass a non-zero GatewayID parameter (with
gatewayType "Fast Transfer"`").

Implementation of background transaction start (PHP)

 $data = array(
 'ServiceID' => '100047',

44

 'OrderID' => '20150723144517',
 'Amount' => '1.00',
 'Description' => 'test bramki',
 'GatewayID' => '71',
 'Currency' => 'PLN',
 'CustomerEmail' => 'test@bramka.pl',
 'CustomerIP' => '127.0.0.0',
 'Title' => 'Test title',
 'ValidityTime' => '2016-12-19 09:40:32',
 'LinkValidityTime' => '2016-07-20 10:43:50',
 'Hash' => 'e627d0b17a14d2faee669cad64e3ef11a6da77332cb022bb4b8e4a376076daaa'
);

 $fields = (is_array($data)) ? http_build_query($data) : $data;

 $curl = curl_init('https://{gate_host}/test_ecommerce');
 curl_setopt($curl, CURLOPT_HTTPHEADER, array('BmHeader: pay-bm'));
 curl_setopt($curl, CURLOPT_POSTFIELDS, $fields);
 curl_setopt($curl, CURLOPT_POST, 1);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, true);
 $curlResponse = curl_exec($curl);
 $code = curl_getinfo($curl, CURLINFO_HTTP_CODE);
 $response = curl_getinfo($curl);
 curl_close($curl);

 echo htmlspecialchars_decode($curlResponse);

Answer - transfer details

In the case of payments of this type, the System generates a set of data
needed to make an intra-bank (and therefore fast) transfer to the AP bank account. This data is
placed in the response to the start of the transaction, in an xml document.

Payment system response to the start of the transaction (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transaction>
 <receiverNRB>47 1050 1764 1000 0023 2741 0516</receiverNRB>
 <receiverName>Autopay</receiverName>
 <receiverAddress>81-718 Sopot, ul. Powstancow Warszawy
6</receiverAddress>
 <orderID>9IMYEH2AV3</orderID>
 <amount>1.00</amount>
 <currency>PLN</currency>
 <title>9IMYEH2AV3 - weryfikacja rachunku</title>
 <remoteID>9IMYEH2AV3</remoteID>
 <bankHref>https://ssl.bsk.com.pl/bskonl/login.html</bankHref>
 <hash> fe685d5e1ce904d059eb9b7532f9e06a64c34c1ea9fcf29b62afefdb7aad7b75
</hash>
 </transaction>

List of returned parameters for the response

45

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 receiverNRB YES string{32} Account number of the recipient of the
transfer (AP).

2 receiverName YES string{1,100} Name of the recipient of the transfer (AP).

3 receiverAddress YES string{1,100} Address details of the recipient of the
transfer (AP).

5 orderID YES string{1,32}
The transaction identifier assigned in the
Partner Service and communicated at the
start of the transaction.

6 amount YES amount

Transaction amount. A full stop - '.' - is used
as decimal separator. Format: 0.00;
maximum length: 14 digits before the
decimal point and 2 after the decimal point.
NOTE: The permissible value of a single
Transaction in the Production System is min.
0.01 PLN, max. 100000.00 PLN (or up to the
Bank's individual single Transaction limit for
an intra-bank transfer).

7 currency YES string{1,3} Transaction currency.

8 title YES string{1,140}
The full title of the transfer (ID together with
the Description field from the start of the
transaction).

9 remoteID YES string{1,20} The unique transfer identifier assigned in the
AP System.

10 bankHref YES string{1,100}
The login address in the online banking
system, which can be used to create a 'Go to
bank' button.

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. Mandatory verification of
compliance of the calculated
abbreviation by the Service.

NOTE: The above information should be used to display transfer data and redirect the user to
the bank's login page.

BLIK 0 OneClick payment

Description of BLIK 0 OneClick payments

46

This is a dedicated solution for BLIK payments, allowing you to payment without entering your BLIK
code (and without having to leaving the Website). Its successful initiation in the System causes
automatic activation/awakening of the bank's mobile application and presenting the transaction to the
User for confirmation.

Potential benefits:

making available the first convenient and secure payment method in mCommerce that does not
require a card number opens this segment to new customers,

better customer shopping experience - pays faster and more conveniently,

shopping frequency and customer value over time - customers are more willing to and more
often buy from those shops where the shopping process is more convenient,

conversion rate - the service has greater control over the process of purchase and payment
process (the customer does not abandon it), the risk of basket loss,

fast transaction decision - in a short time the transaction is subject to authorisation, refusal or
cancellation,

The service has the possibility to analyse the very stage of making the payment.

The condition for BLIK 0 OneClick to be made available to the Customer is to have been authorised on
the Service (having an account and having previously logged into it). If, during a previously executed
BLIK payment, together with other payment information, the Service has sent a dedicated UID Alias
(description of the parameters BlikUIDKey and BlikUIDLabel in another part of the document), and
the Customer, while confirming the payment in the mobile application indicated that he or she wished
to remember the shop, this resulted in a permanent association (typically for a period of 2 years) of
the Service Customer with his/her application, i.e. Alias UID registration. Its subsequent use will result
in authorisation of the transaction without entering the code.

Calling BLIK 0 OneClick payments

When selecting a BLIK Payment Channel, it is recommended not to force the user to enter a BLIK
code. Instead, it is advisable to display the ‘I want to enter my BLIK code BLIK’ hyperlink under the
“Buy and pay” button to enable entering the code in the first attempt (in case the Customer would
like to make a BLIK payment from a different mobile application than the one in which he/she has
previously saved a given Service).

The Service should perform the Pre-Transaction, paying particular attention to the following on:

specifying the parameter GatewayID = 509 - indicating the payment channel BLIK,

47

providing BlikUIDKey and BlikUIDLabel parameters - indicating BLIK 0 OneClick Alias UID
(User ID) required by BLIK 0 OneClick. user)

providing the AuthorizationCode parameter - if the customer provided the code BLIK,

providing BlikAMKey parameter - if the Customer specified a label of the of the bank's mobile
application from the list presented on the Website,

handling possible responses to pre-transaction, including handling ‘Response - no continuation’
and BLIK-specific errors 0 OneClick:

a) error of many mobile applications of the bank (confirmation=NOTCONFIRMED and
reason=ALIAS_NONUNIQUE) - displaying the list of labels returned in the pre-transaction aliases list
(key + label pairs contained in the BlikAMList structure), in order to retrieve the selected key and
provide it in the BlikAMKey parameter of the next pre-transaction attempt

b) authorisation errors (confirmation=NOTCONFIRMED and reason with one of the values:
ALIAS_DECLINED, ALIAS_NOT_FOUND, WRONG_TICKET, TICKET_EXPIRED, TICKET_USED) -
display the Blik Code field, in order to retrieve it and provide it in the AuthorizationCode parameter
of the next pre-transaction attempt

Google Pay

Description

Google Pay is an instant and intuitive payment system from Google. It allows the user to complete the
payment process without completing a card form, as the card details are stored securely on the
company's servers.

Google Pay is a product that allows encrypted data of the customer's payment card to be obtained
allowing it to be debited.

In order to pay via Google Pay, you need to save your payment card to your Google account, using
any Google platform (e.g. buying apps on Google Play) or directly on the Google Pay.

NOTE: The service requires the prior signing of a contract with the card operator. Please
contact the Autopay Business Department for details.

Communication scheme

After clicking on ‘Pay with Google Pay’, a Google Pay form appears on the shop page. In it, the
customer confirms his Google account and the card he intends to pay with (he can also change to
another card or add a new one at this stage). The script transmits the encoded card data in the
background via the postMessage function, then the shop has to accept and encode it via the base64
function and finally send it in the PaymentToken parameter along with the other parameters
(transaction data).

https://pay.google.com/payments/home#paymentMethods

48

On its website, the shop must call up the script provided by Google with the payment processor's
details changed.

TIP: Details in Google developer documentation.

Detailed scheme of communication and data exchange

Google Pay transaction registration

The shop on its website must send a request to the AP Online Payment System to retrieve the
data needed to process Google Pay (paybmApiResponse).

TIP: An example of how to send a request is available at GitHubie Autopay.

The shop must then call the script provided in the parts of the Google Developer Documentation
Tutorial, containing:

a) Payment processor details altered:

const tokenizationSpecification = {
 type: 'PAYMENT_GATEWAY',
 parameters: {
 'gateway': 'bluemedia',
 'gatewayMerchantId': paybmApiResponse.acceptorId
 }

https://developers.google.com/pay/api/web/guides/tutorial
https://github.com/bluepayment-plugin/google-pay-integration-sample/blob/master/sample_pre_transaction.php#L73
https://developers.google.com/pay/api/web/guides/tutorial
https://developers.google.com/pay/api/web/guides/tutorial

49

};

b) Data returned by the AP Online Payment System transferred in the object
PaymentDataRequest.merchantInfo:

PaymentDataRequest.merchantInfo = {
 merchantId: paybmApiResponse.merchantId,
 merchantOrigin: paybmApiResponse.merchantOrigin,
 merchantName: paybmApiResponse.merchantName,
 authJwt: paybmApiResponse.authJwt,
};

After clicking on ‘Pay with Google Pay’ on the shop page, a Google Pay form appears on the
shop page. In it, the customer confirms his Google account and the card he intends to pay with
(he can also change to another card or add a new one at this stage). A script in the background
transmits the encoded card data, which the shop has to accept and then encode with the
Base64 function and send in the PaymentToken parameter together with the rest of the
transaction start parameters (i.e. the transaction data of the AP Online Payment System -
details are described in section Starting a transaction with additional parameters).

TIP: A complete example of integration with Google Pay is available on GitHubie Autopay.

Additional information

In order to maintain the aesthetic integrity of the design used on the website and mobile app, please
use the guidance provided in the parts of the Brand Guidelines of the development documentation
Google for style descriptions and buttons for web pages, and for parts Developer documentation
tutorial Google, where you will find the information needed for the development of the mobile
application.

Apple Pay

Apple Pay implementation on the shop's website.

Request to contact payment infrastructure product - IT support needed.

Creation of an account by the Partner and obtaining a payment processing certificate in
accordance with the document Configure Apple Pay (iOS, watchOS)

- communication certificate – for so-called presentation – merchant identifier

- debit certificate – payment processing certificate

Web implementation in accordance with document Apple Pay on the Web

https://github.com/bluepayment-plugin/google-pay-integration-sample/blob/master/sample_pre_transaction.php#L118
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/android/guides/tutorial
https://developers.google.com/pay/api/android/guides/tutorial
https://help.apple.com/developer-account/#/devb2e62b839?sub=devf31990e3f
https://help.apple.com/developer-account/#/devb2e62b839?sub=devf31990e3f
https://developer.apple.com/documentation/apple_pay_on_the_web/
https://developer.apple.com/documentation/apple_pay_on_the_web/

50

Preparation of 2 endpoints on the Partner's side, on a domain registered with Apple (using 2
certificates from Apple):

- for session start

- to charge the customer based on the token from Apple

TIP: The Safari (the client's browser) request the session to the endpoint (mentioned above)
they then go to us - we return the session.

Apple Pay processing

As part of your service registration with Apple, generate your certificate merchant identity.
Generate a payment processing certificate based on the certificate provided by the AP CSR

NOTE: AP CSR certificates for acceptance and for production differ).

After using it in the Apple registration process, provide the AP with a certificate signed by Apple
and send it via formularz Autopay

TIP: The client should provide the country, city, website domain, email of the contact person.

As part of the payment processing on the Partner site, start an Apple API session.

Then return the Autopay token in the PaymentToken start parameter.

NOTE: Decryption of the token is the responsibility of the AP.

Payment token format: a slice of an object in json format that the ApplePay api returns:

 EncryptedPaymentData {
 String version;
 String data;
 String signature;
 Header header;
 }
 Header {
 String ephemeralPublicKey;
 String publicKeyHash;
 String transactionId;
 String applicationData;
 }

https://developers.autopay.eu/kontakt

51

NOTE: When sending an ApplePayPaymentRequest, you need to populate the applicationData
field with the Base64-encoded orderId value, as described in the document applicationData.

Autopay widget (WhiteLabel model)

Partners who would like to embed some of the transaction starts directly on their site / in their
shopping cart (in the so-called WhiteLabel model) can do so by integrating the Autopay Widget.
Currently, the Autopay Widget supports the collection of card data (within the PaywayId 1500/1503)
or Visa Mobile starts (PaywayId PaywayId 1523)

IMPORTANT! The Partner is not entitled to store Card data (in particular card number, CVC
security code, CVV2), with the exception of the parameters transferred when processing
automatic payments by the AP, as described in this section.

IMPORTANT! The Partner website in which the Autopay widget functionality is used must be
encrypted and the HTML IFRAME with the widget must be embedded in an HTTPS address with
the use of TLS.

IMPORTANT! The partner undertakes to submit to AP, in electronic form,
the following documents:
a) on a one-off basis (prior to the conclusion of the Contract): a completed SAQ-A PCI
questionnaire (Section 2); The document will be provided by AP or is available for download on
the website: https://www.pcisecuritystandards.org
b) On a quarterly basis: the result of the quarterly PCI ASV audit including a scan of external
(public) IP addresses/networks/domains - IPv4 and/or IPv6. Such audit must be conducted by
one of the authorised contractors listed at:
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors

Autopay WidgetJS SDK

You will need to use the Autopay WidgetJS SDK to embed and communicate with the Autopay widget.
In a nutshell, it will come down to embedding the HTML IFRAME with the widget and configuring the JS
SDK to handle the messages (events) produced when the Cardholder interacts with the widget. The
final message is an event with a status of FORM_SUCCESS including paymentToken necessary for the
backend start of transactions on the API of the AP Online Payment System.

Embedding the SDK

Below are examples of how to easily embed and syndicate a widget, using the Autopay WidgetJS SDK,
for both card and VisaMobile channels.

The Autopay WidgetJS SDK is available at widget-new/widget-communication.min.js once it
has been placed in the <head>

<script
src="?r=quot;https://testcards.autopay.eu/widget-new/widget-communication.min.js"></scri
pt>

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/2577137-applicationdata
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors

52

You gain access to the object WidgetConnection

var widgetConfigObject = { ... };
var widget = new WidgetConnection(widgetConfigObject)

which, when supplemented with a configuration in the form of a JSON object, will enable full
communication with the Autopay API and, as a result, ensure that you receive an event with a status
of FORM_SUCCESS from paymentToken'em.

Examples of configurations

Example of configuration for card data

Configuration:

{ language: 'pl', amount: 1.23, currency: 'PLN', serviceId: 123456 }

PaymentToken returned:

{status: 'FORM_SUCCESS', message: 'ey...9', id:
'OGFlZTYyYTMtN2U2OS00MTU1LTgyNDctNmMwMGI2NjE5ZDQy'}

Example of configuration for VisaMobile data

Configuration:

{ language: 'pl', amount: 1.23, currency: 'PLN', serviceId: 123456, merchantName:
'ShopName' }

PaymentToken returned:

{status: 'FORM_SUCCESS', message: 'ey...9', prefix: '48', phoneNumber: '666666666', id:
'OGFlZTYyYTMtN2U2OS00MTU1LTgyNDctNmMwMGI2NjE5ZDQy'}

Detailed discussion of the configuration of the WidgetConnection object

Language

Determines the language version of the widget in which it will be presented.

Field name: language Format string Values: default pl, the following languages are currently

53

supported: cs, de, el, en, es, fr, hr, hu, it, pl, ro, se, sk, sl, uk

Transaction amount

Transaction amount

Field name: amount Format float Values: an amount written in float format, e.g: "1,23 PLN" should
be 1.23

amount: 1.23, currency: 'PLN', serviceId: 123456, merchantName: 'ShopName'

Currency of transaction

Currency of transaction

Field name: currency Format string Values: default PLN, other currencies in a format compatible
with the current service configuration

Service number

Service number received from Autopay (dependent on the development environment)

Field name: serviceId Format integer Values: usually six digits

Recurrence type (for cards only)

Indication of type of recurrence initiation (Only for channel 1503 related to recurrence initiation)

Field name: recurringAction Format string Values: 'INIT_WITH_REFUND', 'INIT_WITH_PAYMENT'

Shop name (only for VisaMobile)

Name displayed to the user in the VisaMobile notification in the bank's mobile application (Only for
VisaMobile channel 1523)

Field name: merchantName Format string Values: Shop name

Card Widget - Example of implementation on a partner website

IMPORTANT! The following example of HTML code was created for illustrative purposes. In
order to actually run it on your local computer, the following HTML file must be placed under
some local domain (any, it can be test.local).
This HTML cannot be fired in the browser as a local file because theJS events exchanged
between the IFRAME and the page are verified for domain consistency (and so some domain
must be present).

The following page is intended to mimic Front Merchant, showing what elements need to be
implemented in order to integrate with the Autopay Widget.

In the browser, the following sample page consists of three sections:

the top section contains a selection of specific payment channels

54

the middle section contains the place where the HTML IFRAME will be embedded, to which the
address of the widget (visamobile or standard card if necessary) will be placed
the bottom section contains a button (inactive by default) PayButon bundled with the JS SDK to
control the start of the process in the widget (in this example, the button only activates when it
receives a message that the validation is correct and the data needed to start the process is
complete)

When a card channel is selected (payway: 1500 or 1503), a dedicated card form view (based on HTML
IFRAME) will load. When full, valid card details are entered in the widget, (thanks to validation events)
the "Pay" button on the Merchant front-end will be activated.

55

TIP: As you can see in the example, it is also possible to support the VisaMobile channel in the
WhiteLabel model. The implementation/layout is analogous to the card widget therefore the
code below already contains both cases.

Validation and completion of data

The Autopay Widget JS SDK receives events from the widget when it enters the card data
VALIDITY_STATUS with value valid: false

56

Once we have the full card details, the last event will be VALIDITY_STATUS with value valid:
true

{status: 'VALIDITY_STATUS', message: null, valid: true, id: 'M2Zl...mU2'}

The activation of the button can be based on this event PayButton

57

TIP: On the test environment, card payments are based on a 3ds mock and an authorisation
mock. Dedicated test card numbers correspond to the different scenarios. A full list of test cases
can be found in a separate appendix.

DCC screen

If the scenario and card meet the conditions for obtaining a DCC offer, an additional screen will
appear with a currency conversion proposal for the cardholder

58

The cardholder can choose to use the card debit in its native currency or leave the original currency.
Validation also occurs on this screen.

59

The selection of the Cardholder's currency will not affect the Merchant and the original amount of the
transaction itself, but will affect the amount the card will be charged. If the Cardholder does not wish
to take advantage of the DCC currency conversion offer, he selects the original currency (which in this
case is PLN).

Obtaining a token

The button should be linked to the Autopay Widget JS SDK so that clicking it triggers a call to the
widget.sendForm(); method in the WidgetConnection object Which, ultimately, will result in a
FORM_SUCCESS event, i.e. getting the paymentToken value (in the message field).

{status: 'FORM_SUCCESS', message: 'eyJ...n19', id: 'M2Z...ZmU2'}

60

Card Widget - Detailed scheme of communication and data exchange

The following is a detailed diagram of the communication between Merchant, Cardholder and Autopay
payment systems in the case of so-called WhiteLabel integration (i.e. using a card widget)

Merchant Backend Merchant Front Cardholder Widget CardsAutopay PayAutopay Backend CardsAutopay Backend

(3) Przekazanie danych karty
wprowadzonych przez Cardholdera(0) Dane konf do initJS (1) Wyswietlenie widgeta (2) Wpisanie danych karty

(3a) Zwrocenie propozycji dotyczacej DCC
(nie dotyczy wszystkich kart)

(3c) Przekazanie danych karty wprowadzonych
wczesniej przez Cardholdera oraz decyzji DCC(3b) Decyzja w sprawie DCC

(6) Przekazanie tokenu
do backendu Merchanta (5) JS Event zawierajacy token platniczy (4) Zwrocenie tokenu platniczego

(7) Backendowy start transakcji PayAutopay z paymentTokenem

(8) Zwrocenie URL przekierowania do startu transakcji z użytkownikiem

(11) Autentykacja
i autoryzacja(9) Przekazanie URL na front (10) Przekierowanie Cardholdera ze strony Merchanta na PayAutopay w celu autentykacji 3DS 3DS

(14) Przekierowanie Cardholdera ze strony PayAutopay (po autentykacji 3DS) z powrotem do strony Merchanta (13) Status Trx (12) Wynik obciążenia

(15) ITN

Secure transfer of card data to the Autopay system and full transaction flow:

(0) Transfer of configuration data initiating the embedding of the Widget to the frontend.
(1) Display of the Widget's cardformat embedded on the Merchant frontend (card data is not
provided on the Merchant frontend but on the Autopay widget frontend)
(2) Start by the cardholder entering the card data.

61

(3) Transmission of card data using a TLS connection secured with an Extended Validation
certificate to the CardsAutopay backend. ** Only applicable if DCC can be offered ** (3a)
Returning the details of the DCC conversion proposal ** (3b) Cardholder decides whether to use
DCC ** (3c) Transmission of card details previously entered by Cardholder and DCC decision
follows
(4) WidgetJS receives the `paymentToken' value from CardsAutopay and sends it to the
Merchant Front (via JS).
(5) The Merchant Front receives the payment token from the Widget via a JavaScript event.
(6) The Merchant Front passes the payment token to the Merchant Backend.
(7) There is a backend start of Pre-transaction with paymentToken received earlier from the
frontend.
(8) Autopay API returns the continue-transaction URL which will be used to redirect to the start
of the transaction with the user
(9) Merchant's backend forwards the redirect URL to the Merchant frontend.
(10) Cardholder redirection from Merchant's website to PayAutopay for 3DS authentication.
3DS verification follows (depending on the bank's decision, this may be full or simplified
verification)
(11) When the Cardholder ‘returns’ from the 3DS, the authentication result is
completed/collected and authorised.
(12) Autopay receives the debit result.
(13) The transaction status is transmitted to the Online Payment System (in the background).
(14) Cardholder redirection from the PayAutopay website (after 3DS authentication) back to
Merchant's website occurs.
(15) Asynchronously to the Merchant's backend comes the message ITN with the status of the
transaction ** (in the case of a transaction initiating a recurrence, the Merchant's Backend will
also receive an additional message RPAN)

Notification of the launch of an automatic payment (RPAN)

Below is an example of a simple HTML/JS implementation using the VisaMobile widget (and card
widget)

{ 'status': 'FORM_SUCCESS', 'message': 'eyJrZ...', ... }

Crucial to this integration is the place in the JS code that is responsible for receiving events, especially
the event with status FORM_SUCCESS, as it contains in the message field the value of the
paymentToken that the merchant needs to pass to its backend in order to complete the parameters
for the Autopay API to enable the payment to start in Autopay.

Example page

In the browser, the following sample page consists of three sections:

the top section contains icons/buttons for specific payment channels (using graphical
representations from Autopay)
the middle section contains the placeholder for the HTML IFRAME, into which the widget address
(visamobile or standard card as required) will be inserted if necessary

62

the bottom section contains the (inactive by default) PayButon button, bundled with the JS
SDK, which controls the start of the process in the widget (in this example, the button only
becomes active when it receives a message about correct validation and obtaining all the data
needed to start the process)

When a channel dedicated to VisaMobile is selected, a dedicated view (based on HTML IFRAME) is
displayed, where entering the full phone number (thanks to validation messages) results in the
activation of the 'Pay' button.

63

Validation and completion of data

When entering a phone number, the Autopay Widget JS SDK receives a VALIDITY_STATUS event
from the widget with the value valid: false When the full phone number is obtained, the last
event will be VALIDITY_STATUS with the value valid: true.

{status: 'VALIDITY_STATUS', message: null, valid: true, id: 'M2Zl...mU2'}

The activation of the button can be based on this event PayButton

64

Obtaining a token

The button should be linked to the Autopay Widget JS SDK so that clicking it triggers a call to the
widget.sendForm(); method in the WidgetConnection object Which, ultimately, will result in a
FORM_SUCCESS event, i.e. obtaining the paymentToken value.

{status: 'FORM_SUCCESS', message: 'eyJ...n19', prefix: '48', phoneNumber: '666666666',
id: 'M2Z...ZmU2'}

65

Visa Mobile widget - Detailed scheme of communication and data exchange

Merchant Front Merchant Backend PayAutopay CardsAutopay Visa

(1) Start wpisanie nr tel (2) Start Visa

(4) Dane tokenu płatniczego (3) Wynik

(5) Przekazanie tokenu (6) Start trx PayAP

(8) Wynik (7) zwrotka PENDING

(9a) Próba anulowania (9b) Anulowanie

(9e) ITN (trx anulowana) (9d) Status transakcji (9c) Wynik

(10) Dane płatnicze

(11) Obciążenie

(13) Status Trx do PayAP (12) Wynik obciążenia
(14) ITN

Start transaction:

(1) Start by entering your phone number in the VisaMobile widget.

66

(2) Start transaction in VisaMobile
(3) Return from VisaMobile
(4) Return from the widget to Merchant (using JS) the generated paymentToken.
(5) The Merchant front end passes the payment token to the Merchant backend.
(6) Backend starts Pre-transaction with paymentToken with paymentToken received earlier.
(7) The return gets an XML PENDING response right away (because it is processed in the
background).
(8) The Merchant front end presents a screen waiting for the result.

Possible cancellation of the transaction (from the PayAutopay paywall):

(9a) If the user does not get the notification in the mobile app or changes his/her mind he/she
has the option to cancel the transaction from within the paywall
(9b) A cancellation request is sent from the CardsAutopay system to Visa.
(9c) The CardsAutopay system receives the cancellation result from Visa.
(9d) The cancellation result is received by the PayAutopay system and presented to the user on
the PayAutopay paywall.
(9e) In parallel, an ITN is sent (with negative status) to Merchant

Load and return the result:

(10) Waiting for payment token data from Visa (if the VisaMobile customer confirms in the
mobile app that they want to pay with a specific card for a particular order)
(11) A debit order follows.
(12) A positive or negative debit result is received
(13) Transaction status is sent to the PayAutopay gateway.
(14) The Autopay gateway sends the transaction result to Merchant in the form of ITN

Description of the sample HTML JS code (Card Widget and VisaMobile)

The following code was used to generate the example integrations mentioned above in the sections
with examples of the implementation of the Card Widget as well as the Visa Mobile Widget

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Autopay Widget Integration Example</title>
 <script
src="?r=quot;https://testcards.autopay.eu/widget-new/widget-communication.min.js"></scri
pt>
 <style>/* omitted from the example */</style>
</head>
<body>
<div>
 <form onsubmit="submitForm(event)" novalidate>
 <div class="form-group"><p>Transaction amount:</p>1,23 PLN</div>

 <!-- example implementation of a merchant-side payment channel selection mechanism -
->
 <p>Choose payment method:</p>

 <li onclick="setPayway(event, 1500)">One time payment with card
 <li onclick="setPayway(event, 1503)">Remember your card
 <li onclick="setPayway(event, 1523)">Pay with VisaMobile

67

 <!-- the place where the HTML IFRAME with the widget will be injected -->
 <div class="form-group" id="iframe-wrapper">
 <iframe id="iframe"></iframe>
 </div>

 <!-- call to action button in the widget -->
 <button type="submit" id="button" disabled="disabled">PayButton</button>
 </form>
</div>
<script type="text/javascript">
window.addEventListener("load', () => {
 // auxiliary variables (only for the purpose of the example)
 var currentPayway = null;
 var widget = null;

 // example configurations depending on the devlopers' environment (only for the
purpose of the example)
 var AUTOPAY_CARDS_DOMAIN_ENV_PROD = 'https://cards.autopay.eu';
 var AUTOPAY_CARDS_DOMAIN_ENV_TEST = 'https://testcards.autopay.eu';

 var MERCHANTS_SERVICE_ID_ENV_PROD = 903555;
 var MERCHANTS_SERVICE_ID_ENV_TEST = 903555;

 // auxiliary method to support payment channel selection and widget embedding
 function setPayway (event, paywayId) {
 if (currentPayway === paywayId) {
 return;
 }
 currentPayway = paywayId
 removeWidget();
 disableSubmitButton();
 markActiveIcon(event);

 if (paywayId === 1500) {
 startWidget('/widget-new/partner' , { language: 'en', amount: 1.23,
currency: 'PLN', serviceId: MERCHANTS_SERVICE_ID_ENV_TEST });
 return
 }
 if (paywayId === 1503) {
 startWidget('/widget-new/partner' , { language: 'en', amount: 1.23,
currency: 'PLN', serviceId: MERCHANTS_SERVICE_ID_ENV_TEST, recurringAction:
'INIT_WITH_REFUND' });
 return
 }
 if (paywayId === 1523) {
 startWidget('/widget-new/visamobile', { language: 'en', amount: 1.23,
currency: 'PLN', serviceId: MERCHANTS_SERVICE_ID_ENV_TEST, merchantName: 'ShopName' });
 return
 }
 }

 // auxiliary method (only for the purpose of the example) setting the border on the
selected payment channel
 function markActiveIcon (event) {
 var currentActive = document.querySelector('ul li.active');
 if (currentActive) {
 currentActive.classList.remove('active');
 }
 var newActive = event.target;
 if (newActive.nodeName.toLowerCase() === 'img') {

68

 newActive = newActive.parentNode;
 }
 newActive.classList.add('active');
 }

 // the main method responsible for embedding the IFRAME with the widget and setting
up communication between it and its object representation WidgetConnection
 function startWidget (widgetVariantUrl, widgetConfig) {
 if (!widgetEvents || !WidgetConnection) {
 return;
 }
 var iframeEl = document.getElementById('iframe');
 iframeEl.src = AUTOPAY_CARDS_DOMAIN_ENV_TEST + widgetVariantUrl;
 widget = new WidgetConnection(widgetConfig)

 widget.startConnection(iframeEl).then(() => {

 // handling the main, final event containing the PaymentToken value
 widget.on(widgetEvents.formSuccess, function (message, eventData) {
 console.log('payment token event =>', eventData);
 console.log('payment token value:', message);
 // here should be a merchant API call to pass the paymentToken (message)
to the merchant backend; <<<<<<<<<<<<<<<<<
 })

 // handling validation events during user/cardholder input in the widget
 widget.on(widgetEvents.validityStatus, function (message, eventData) {
 console.log('form validation status =>', eventData);
 if (eventData.valid) {
 enableSubmitButton();
 } else {
 disableSubmitButton();
 }
 })

 // handling the validation event when the user/cardholder enters data in the
widget
 widget.on(widgetEvents.validationResult, function (message, eventData) {
 console.log('form validation result =>', eventData);
 if (eventData.valid) {
 enableSubmitButton();
 } else {
 disableSubmitButton();
 }
 })

 // handling the showModal event
 widget.on(widgetEvents.showModal, function () {
 console.log('show modal');
 })
 })
 }

 // an auxiliary method (only for the purpose of the example) setting the removal of
the widget for payment channels other than cards (in the example, there is a 106 PBL
channel)
 function removeWidget () {
 if (!widget) {
 return;
 }
 widget.stopConnection();
 }

69

 // auxiliary method (only for the purpose of the example)
 function enableSubmitButton () {
 document.getElementById('button').removeAttribute('disabled');
 }

 // auxiliary method (only for the purpose of the example)
 function disableSubmitButton () {
 document.getElementById('button').setAttribute('disabled', 'disabled');
 }

 // an auxiliary method (for the purpose of the example only) that binds the call of
the active pay button to the sendForm() call in the widget object
 function submitForm (event) {
 event.preventDefault();
 if (!widget || widget.invalid) {
 return;
 }
 disableSubmitButton();
 widget.sendForm();
 }

 window.setPayway = setPayway;
 window.submitForm = submitForm
});
</script>
</body>
</html>

Automatic payment

Description of automatic payment

Automatic payments are an extremely convenient and secure way of making recurring transactions. It
involves the automatic collection of receivables from the customer on its payment dates. The service
must first be activated. In the case of cards, this is done by redirecting the customer to the service
activation form. In the case of BLIK while by accepting an automatic payment in the Mobile
Application. Upon successful authorisation of such an activation transaction, the AP transmits to the
Partner a standard message about the change of status of the transaction (ITN) and a message about
the activation of the automatic payment service (RPAN). The RPAN message contains the field
clientHashwith which the partner will identify the specific automatic payment during subsequent
debits and deactivation of the service.

All transactions within the lifecycle of an automated payment
(activation and debit) are carried out within dedicated
Payment Channels (BLIK - GatewayID=522, Payment cards – GatewayID = 1503) i
gatewayType="Płatność automatyczna". In the case of integrating
BLIK automatic payments, it is possible to specify (in the data provided before
integration) the lifespan of activated automatic payments
(unlimited by default) or to specify it in the initialisation transaction
(parameter RecurringValidityTime).

Activation of automatic payment

Activation of the automatic payment consists of an authorisation activation transaction, ITN

70

communication and RPAN. Upon receipt of the RPAN, the Partner is ready to perform recurring debits
(or one click).

It is a case of activation of the automatic payment service during
payment for a service/good (thus RecurringAction=INIT_WITH_PAYMENT and settlement of the
transaction to the Partner).

Process for activating the automatic payment service

The ITN message sent after an automatic payment is similar to those received after one-time
payments (it is only extended by the RecurringData node, and - for card payments - CardData).
The other two elements of the service activation process are transaction start and RPAN.

Automated transaction start message

The service activation process is initiated from the Partner Site by starting the transaction with the
parameter RecurringAction allows you to control the behaviour of the System:

a) value INIT_WITH_PAYMENT - corresponds to the activation of the automatic payment service
when paying for a service/goods (card or account is debited with the amount due, and funds from the
payment are transferred to the Partner); on the list of available payment channels, the System
presents only automatic payments (unless a payment channel has been selected payment channel in
the Service),

b) value INIT_WITH_REFUND - corresponds to the activation of the automatic payment service
outside the payment process for the service/goods (the card or account are debited with the amount
of PLN 1, followed by automatic refund of funds to the Customer's account); on the list of available
payment channels available, the System presents only automatic payments (unless a payment
channel has been payment channel has been selected on the Site),

c) no parameter (or empty) - unless a payment channel is selected on the Site, the System will display

71

all payment channels available for the Site (including automatic ones) and leave it to the Customer to
decide: one-time payment or initiation of automatic payment. If the Customer chooses automatic
payment, the transaction will be billed to the Partner in the standard way (and the
RecurringAction=INIT_WITH_PAYMENT parameter will return in RPAN).

NOTE: It is not permitted to initiate activation transactions with the selected automatic
payment channel but without the selected RecurringAction.

In some cases (if it follows from the response of the method legalData) it is also required to specify
the parameters RecurringAcceptanceState (with the value ACCEPTED, which means that the
customer has read and accepted the terms and conditions of the automatic payment on the Partner
Service) and RecurringAcceptanceID.

Activation of the automatic payment card service is carried out on formats provided by AP. The
customer is required to enter card details: first name, surname, card number, expiry date and CVV
code. In the case of automatic payment from a bank account (BLIK), authorisation is carried out
without entering card data: e.g. with BLIK code (transported in the start-up parameters in
AuthorisationCode), or via BLIK OneClick Alias (transported in the start-up parameters in
BlikUIDKey/BlikUIDLabel).

Once the transaction has been authorised, the AP System transmits to the Partner Service a
transaction status change (ITN) message and a message about activation of the automatic payment
service (RPAN). The RPAN message is dedicated to automatic payment activation events and contains
its identifier (ClientHash), which the Partner will use during subsequent debits and deactivation of the
service. The RPAN also contains information about an action in the automatic payment process
(RecurringAction, described above).

Notification of the launch of an automatic payment (RPAN)

Upon receipt of a positive payment status for activation of automatic payment, a dedicated message
is sent to the Service. This notification consists of sending by the AP System an XML document
containing data about the activated automatic payment. The document is sent via HTTPS protocol
(port 443 by default), using the POST method, as an HTTP parameter named recurring. This
parameter is stored using the Base64 transport encryption mechanism.

Document format (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <recurringActivation>
 <serviceID>ServiceID</serviceID>
 <transaction>
 <orderID>OrderID</orderID>
 <remoteID>RemoteID</remoteID>
 <amount>999999.99</amount>
 <currency>PLN</currency>
 <gatewayID>GatewayID</gatewayID>
 <paymentDate>YYYYMMDDhhmmss</paymentDate>
 <paymentStatus>PaymentStatus</paymentStatus>
<paymentStatusDetails>PaymentStatusDetails</paymentStatusDetails>
 <startAmount>999998.99</startAmount>
 <invoiceNumber>InvoiceNumber</invoiceNumber>
 <customerNumber>CustomerNumber</customerNumber>

72

 <customerEmail>CustomerEmail</customerEmail>
 <customerPhone>CustomerPhone</customerPhone>
 </transaction>
 <recurringData>
 <recurringAction>RecurringAction</recurringAction>
 <clientHash>ClientHash</clientHash>
 <expirationDate>YYYYMMDDhhmmss</expirationDate>
 </recurringData>
 <cardData>
 <index>Index</index>
 <validityYear>ValidityYear</validityYear>
 <validityMonth>ValidityMonth</validityMonth>
 <issuer>Issuer</issuer>
 <bin>BIN</bin>
 <mask>Mask</mask>
 </cardData>
 <hash>Hash</hash>
 </recurringActivation>

Element values: orderID, serviceID, amount pertaining to each activated automatic payment are
identical to the values of the corresponding fields provided by the Service at the initiation of the
respective initialization payment.

Description of the parameters returned for triggering the automatic payment

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1. serviceID YES string{1,10}

The Partner Service ID, assigned
during service registration,
uniquely identifies the Partner
Service in the Online Payment
System.

2. transaction -> orderID YES string{1,32}
The transaction identifier assigned
in the Partner Service and
communicated at the start of the
transaction.

3. transaction -> remoteID YES string{1,20}
An alphanumeric transaction
identifier assigned by the Online
Payment System.

73

Hash
order name required type description

5. transaction -> amount YES amount

Transaction amount. A dot - '.' - is
used as decimal separator. Format:
0.00; maximum length: 14 digits
before the dot and 2 after the dot.
NOTE: The permissible value of a
single Transaction in the
Production System is respectively:
- for PBL - min. 0.01 PLN, max.
100000.00 PLN (or up to the
amount set by the Bank issuing the
payment instrument)
- for Payment Cards – min. 0.10
PLN, max. 100000.00 PLN (or up to
the amount set by the Bank issuing
the payment instrument)
- for Fast Transfers - min. 0.01 PLN,
max. 100000.00 PLN (or up to the
Bank's individual limit for a single
transaction for an intra-bank
transfer)
- for BLIK - min. 0.01 PLN, max.
75000.00 PLN (or up to the Bank's
individual limit for a single
transaction for an intra-bank
transfer)
- dla OTP – min. 100.00 PLN, max.
2000.00 PLN
- for Alior Installments – min. 50.00
PLN, max. 7750.00 PLN

6. transaction -> currency YES string{1,3} Transaction currency.

7. transaction -> gatewayID YES string{1,5}
Identifier of the Payment Channel
through which the customer
settled the payment.

8. transaction ->
paymentDate YES string{14}

The time when the transaction was
authorised, transmitted in the
format YYYYMMDDhhmmss. (CET
time).

9. transaction ->
paymentStatus YES enum

Transaction authorisation status.
Takes values (status transitions
identical to the corresponding field
in ITN):
PENDING – transaction initiated
SUCCESS – correct authorisation
of transactions, the Service
receives the funds for the
transaction
FAILURE – transaction not
completed correctly

74

Hash
order name required type description

10. transaction ->
paymentStatusDetails YES enum

Detailed status of the transaction,
the value can be ignored by the
Service.

11. transaction ->
startAmount NO amount

The amount of the transaction
stated in the Payment Link (does
not include the amount of the
commission charged to the
Customer, if any.) The sum of the
Customer's commission and
startAmount is in the amount field,
as this is the resulting value of the
transaction). A dot - '.' - is used as
the decimal separator. Format:
0.00; maximum length: 14 digits
before the dot and 2 after the dot.

12. transaction ->
invoiceNumber NO string{1,100} The number of the financial

document in the service.

13. transaction ->
customerNumber NO string{1,35} Customer number in the service.

14. transaction ->
customerEmail NO string{1,60} Customer email address.

15. transaction ->
customerPhone NO string{9-15} User telephone number.

16. recurringData ->
recurringAction NO string{1,100} Action in the automatic payment

process.

17. recurringData ->
clientHash YES string{1,64} Automatic payment identifier.

18. recurringData ->
expirationDate NO string{14}

Expiry time of the automatic
payment, transmitted in the format
YYYYMMDDhhmmss. (CET time)

19. cardData -> index NO string{1, 64}
Index of the payment card used in
the automatic payment (if a card is
used).

20. cardData -> validityYear NO string{4} Card validity in YYYY format (if a
card was used).

21. cardData -> validityMonth NO string{2} Card validity in mm format (if card
used).

75

Hash
order name required type description

22. cardData -> issuer NO string{64}

Card issuer, possible values:
- VISA
- MASTERCARD
- MAESTRO
- AMERICAN EXPRESS (currently
not supported)
- DISCOVER (currently not
supported)
- DINERS (currently not supported)
- UNCATEGORIZED (unrecognized
issuer)

23. cardData -> bin NO string{6} First 6 digits of the card number.

24. cardData -> mask NO string{4} The last 4 digits of the card
number.

nd. hash YES string{1,128}

Value of message digest function
calculated as described in section
Security of transactions.
Mandatory verification of
compliance of the calculated
abbreviation by the Service.

TIP: Element hash (message) is used to authenticate
the document. For a description of how the hash is calculated, see section Security of
transactions.

Response to notification

In response to the notification, an HTTP status of 200 (OK) is expected and a text in XML format (not
Base64 encoded), returned by the Partner Service in the same HTTP session, containing an
acknowledgement of receipt of the message.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>ServiceID</serviceID>
 <recurringConfirmations>
 <recurringConfirmed>
 <clientHash>ClientHash</clientHash>
 <confirmation>Confirmation</confirmation>
 </recurringConfirmed>
 </recurringConfirmations>
 <hash>Hash</hash>
 </confirmationList>

Confirmation element of the automatic payment

76

The confirmation element is used to convey the status of verification of the authenticity of the
transaction by the Partner Service. The value of the element is determined by checking the
correctness of the value of the serviceID parameter, comparing the values of the orderID and
amount fields in the notification message and in the message initiating the transaction, and verifying
the consistency of the calculated hash from the message parameters with the value passed in the
message hash field.

Two values are provided for the element confirmation:

a) CONFIRMED - the parameter values in both messages and the hash parameter match - the
transaction is genuine;

b) NOTCONFIRMED - the values in the two messages are different or a hash mismatch - transaction
not authentic;

TIP: The hash element (in the message response) is used to authenticate the response and is
calculated from the values of the response parameters. For a description of how the hash is
calculated, see the section Security of transactions.

If there is no correct response to the sent notifications, the online payment system will make another
attempt to transmit it after a specified time has elapsed. The Partner's service should perform its own
business logic (e.g. launching an automatic payment service, mailing etc.) only after the first message
of a given ClientHash.

ITN/ISTN/IPN/RPAN/RPDN message retry scheme

Below is a diagram describing the scheduled renewal of messages (we reserve however, the
possibility of renewing any of them at any time).

Retry number Interval until next renewal

1-12 3 min

13-156 10 min

157-204 1 hour

205-209 1 day

NOTE: Continuous repetition of an identical message by the System indicates a missing or
incorrect response to it from the Service, and requires the Partner to urgently diagnose the
cause.

Charge for automatic payment

Correct receipt of the service identifier (ClientHash), makes the Partner ready to automatically
charge the Customer for goods/services purchased from the Service. The process consists of
transactions and ITN communication.

77

Below is the process of automatically charging the customer for the service/goods (thus
RecurringAction=MANUAL/AUTO and settlement of the transaction to the Partner).

The ITN message sent after an automatic payment is similar to those received after one-off payments.
It is only extended by the RecurringData node and (for card payments) CardData.

Automated payment transaction start message

In order to execute an automatic debit, the Partner Service should execute a Pre-transaction with a
ClientHash parameter, consistent with the previously activated automatic payment service
(originating from RPAN), with a RecurringAcceptanceState parameter of NOT_APPLICABLE and
the corresponding value of the RecurringAction parameter:

a) AUTO - recurring payment (debit without customer involvement),

b) MANUAL - one-click payment (debit ordered by
the customer, called OneClick).

NOTE: The customer's participation in the MANUAL option, is usually limited to calling a
message (selecting in the Service the option to pay with the stored card). In the vast majority of
cases, an additional authorisation at the bank (in the form of a 3DS or CVC code) is required.
Then, instead of a debit (and the status of the order in response to the pre-transaction), the
System will return a link to continue - this is the default behaviour of the system on the test
environment. In order to test the load scenario without the need for additional authorisation, the
need to change the configuration of the System for the duration of the test must be declared.

NOTE: Option not available for BLIK automatic payments (BLIK
OneClick).

78

Deactivation of service

The partner can deactivate the automatic payment service at any time. The process may consist of a
message ordering the deactivation and an RPDN message (dedicated to events of cancellation of the
automatic payment service).

It may also happen that the cancellation of the service is initiated from the AP side (e.g. at the
request of the Customer, bank or card organisation). In such a situation, the System will also provide
an RPDN message.

Automatic payment deactivation message

The service can disable the service via a dedicated message. All parameters are transmitted via the
POST method (to the address https://{gate_host}/deactivate_recurring). The protocol is case sensitive
in both parameter names and values. The values of passed parameters should be encoded in UTF-8.

List of parameters for deactivating automatic payment

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10}
The Partner Service ID, assigned during service
registration, uniquely identifies the Partner
Service in the Online Payment System.

2 MessageID YES string{32}
Pseudo-random message identifier with a length
of 32 Latin alphanumeric characters (e.g. based
on UID), the field value must be unique for the
Partner Site.

3 ClientHash YES string{1,64} Automatic payment identifier.

79

Hash
order name required type description

nd. Hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

NOTE: The Hash (message) element is used to authenticate the document. The value of this
element is calculated as the value of a hash function from a string containing the concatenated
values of all document fields and the attached shared key.

Response

In response to the notification, an XML-formatted text is returned in the same HTTP session,
containing an acknowledgement.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <recurringConfirmations>
 <recurringConfirmed>
 <clientHash>ClientHash</clientHash>
 <confirmation>Confirmation</confirmation>
 <reason>Reason</reason>
 </recurringConfirmed>
 </recurringConfirmations>
 <hash>Hash</hash>
 </confirmationList>

Element confirmation

The confirmation element is used to convey the status of verification of the authenticity of the
operation by the Service. The value of the element is determined by checking the correctness of the
values of the serviceID and clientHash parameters with those provided in the RPAN message at the
start of a given activation payment, as well as verifying the consistency of the calculated hash from
the message parameters with the value provided in the Hash field.

Two values are provided for the element confirmation:

a) CONFIRMED - the parameter values are correct and the Hash parameter are consistent - the
operation is genuine;

b) NOTCONFIRMED - values in both messages are incorrect or Hash mismatch - operation not
authentic;

80

NOTE: The hash element (in the message response) is used to authenticate the response and is
calculated from the value of the response parameters. The value of this element is calculated as
the value of a hash function from a string containing the concatenated values of all document
fields (without tags) and the attached shared key. For a description of the Security of
transactions.

Notification of deactivation of automatic payment (RPDN)

When the automatic payment is deactivated for a given ClientHash, a dedicated message in the
form of an XML document is sent, is via HTTPS protocol (default port 443), using the POST method,
with a parameter named recurring. This parameter is stored using the Base64 transport encoding
mechanism.

Document format (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <recurringDeactivation>
 <serviceID>ServiceID</serviceID>
 <recurringData>
 <recurringAction>RecurringAction</recurringAction>
 <clientHash>ClientHash</clientHash>
 <deactivationSource>DeactivationSource</deactivationSource>
 <deactivationDate>DeactivationDate</deactivationDate>
 <recurringData>
 <hash>Hash</hash>
 </recurringDeactivation>

The values of the elements: serviceID, clientHash relating to each deactivated cyclic payment, are
identical to the values of the corresponding fields, given in the RPAN message at the start of the
respective initialisation payment.

Description of the returned parameters

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10}
The Partner Service ID, assigned
during service registration, uniquely
identifies the Partner Service in the
Online Payment System.

2 recurringData ->
recurringAction YES string{1,100}

Action in the automatic payment
process (in this case, the value
DEACTIVATE).

3 recurringData ->
clientHash YES string{1,64} Automatic payment identifier.

81

Hash
order name required type description

4 recurringData ->
deactivationSource YES string{1,64}

Reason for deactivation of automatic
payment. This description should be
treated as informative, the list of its
allowed values is constantly growing
and the appearance of new values
may not entail the non-acceptance of
the RPDN message.

Below are the current values:
- SERVICE: requested by Partner
- ACQUIRER: commissioned by the AP
(e.g. upon receipt of information on
fraudu)
- BM_PLordered by the customer on
bills.autopay.eu
- PAYBM: resulting from card expiry.

5 recurringData ->
deactivationDate YES string{14}

The time when the automatic payment
is switched off, transmitted in the
format YYYYMMDDhhmmss. (CET time)

nd. hash YES string{1,128}

Value of message digest function
calculated as described in section
Security of transactions. Mandatory
verification of compliance of the
calculated abbreviation by the
Service.

NOTE: The hash (message) element is used to authenticate the document. The value of this
element is calculated as the value of a hash function from a string containing the concatenated
values of all document fields and an attached shared key.

Acknowledgement of receipt of the message

In response to the notification, an HTTP 200 (OK) status is expected and a text in XML format (not
Base64 encoded), returned by the Service in the same HTTP session, containing an acknowledgement
of receipt of the message.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>ServiceID</serviceID>
 <recurringConfirmations>
 <recurringConfirmed>
 <clientHash>ClientHash</clientHash>
 <confirmation>Confirmation</confirmation>
 </recurringConfirmed>
 </recurringConfirmations>
 <hash>Hash</hash>
 </confirmationList>

82

Element Confirmation

The confirmation element is used to convey the status of verification of the authenticity of the
operation by the Service. The value of the element is determined by checking the correctness of the
values of the serviceID and clientHash parameters with those provided in the RPAN message at the
start of a given initialization payment, and verifying the consistency of the calculated hash from the
message parameters with the value provided in the hash field.

Two values are provided for the element confirmation:

a) CONFIRMED - parameter values are correct and the hash parameter are consistent - authentic
operation

b) NOTCONFIRMED - values in both messages are invalid or hash mismatch - operation not
authentic

NOTE: The hash element (in the message response) is used to authenticate the response and is
calculated from the values of the response parameters. For a description of how the hash is
calculated, see the section Security of transactions.

In the absence of a correct response to the sent notifications, the System will make further attempts
to communicate the latest status of the transaction after the specified time has elapsed. The Partner
Service should perform its own business logic (e.g. confirmation email), only after the first message
about a given payment status.

TIP: We recommend that you also read the sections Communication monitoring
ITN/ISTN/IPN/RPAN/RPDN and Message retry scheme ITN/ISTN/IPN/RPAN/RPDN.

Starting a transaction with additional parameters

Transaction starts can be carried out with the additional parameters outlined in the following sections.

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name type description

8 Language string{1,2}

Selection of the language in which content will be
presented in the Sytem.
Acceptable values are: PL, EN, DE, CS, ES, FR, IT.
The use of values other than PL should be
confirmed during integration and should depend
on the Customer's actual choice of language on
the Website.

83

Hash
order name type description

9 CustomerNRB string{26}

Customer account number, a parameter intended
only for Partner Services generating dedicated
account numbers for the order or the Customer
(see Settlement model for transactions after each
payment).
Only digits allowed. If, during integration, the use
of accounts outside Poland was established, then
the field transfers IBAN and the expected field
data range changes to: alphanumeric Latin
characters (min. 15, max. 32 characters).

10 SwiftCode string{8,11}

The swift code corresponding to the account
number given.
Only digits allowed. Parameter to be provided if
the use of non-Polish accounts was established
during integration.

11 ForeignTransferMode string{4,5}

The system by which the foreign settlement
transfer is to be made:
SEPA (Single Euro Payments Area) - possible
transfers in Euro currency within the European
Union Member States, as well as other countries
within the Old Continent, e.g. Iceland,
Liechtenstein, Norway, Switzerland, Monaco or
Andorra,
SWIFT - foreign transfers not feasible with SEPA
(e.g. different currency than Euro), involves higher
transfer costs than with SEPA.

Acceptable values: SEPA and SWIFT.
Parameter to be provided if the use of accounts
outside Poland has been established during
integration.

12 TaxCountry string{1,64} Country of residence of the payer.

13 CustomerIP string{1,15}
User's IP address, a parameter intended only for
Partner Services running the System in the
background (see Pre-transaction and Ordering
transfer data in a Fast Transfer transaction).

14 Title string{1,95}

Title of the transfer clearing the transaction, a
parameter intended only for Partner Services
cleared by transfer after each payment (see
Transaction settlement model after each
payment). In some cases, independent of AP, the
title of the settlement transfer may be modified
independently by the Bank from which the
settlement took place.
Acceptable alphanumeric Latin characters and
characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-/,!()\", where
the "/" sign will be replaced by a "-" for outgoing
transactions.

15 ReceiverName string{1,35}

Name of the recipient of the transfer clearing the
transaction, parameter intended only for Partner
Services cleared by transfer after each deposit
(see Transaction settlement model after each
payment).
Acceptable alphanumeric Latin characters and
characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-/,!()=\[\]{};:?

84

Hash
order name type description

16 Products string{1,10000}

Information about the products included in the
transaction, transmitted as Base64 transport
protocol encoded XML.
The description of the structure in part Product
basket.

17 CustomerPhone string{9-15} User telephone number.
_ Only digits allowed._

18 CustomerPesel string{11} User's PESEL number.
Only digits allowed.

20 CustomerNumber string{1,35} Customer number in the Service.

21 InvoiceNumber string{1,100} The number of the financial document in the
Service.

22 CompanyName string{1,150} Company name for automatic verification of the
contributor, e.g. Cool Company.

23 Nip string{1,10}
The VAT identification number of the verified
company, e.g. 5851351185.
Only digits allowed.

24 Regon string{9,14}
The REGON identification number of the verified
company, e.g. 191781561.
Only digits allowed.

25 VerificationFName string{1,32}
The first name provided in the Service for
automatic verification of the contributor, e.g. Jan.
Only letters of the Polish alphabet are acceptable.

26 VerificationLName string{1,64}
Name given in the Service for automatic
verification of the contributor, e.g. Smith.
Only letters of the Polish alphabet are acceptable.

27 VerificationStreet string{1,64}
Street provided on the Service for automatic
verification, e.g. Long.
Only letters of the Polish alphabet and numbers
are permitted.

28 VerificationStreetHouseNo string{1,64}
The house number provided on the Service for
automatic verification of the contributor.
Only letters of the Polish alphabet and numbers
are permitted.

29 VerificationStreetStaircaseNo string{1,64}
The staircase number provided on the Service for
automatic verification of the contributor.
Only letters of the Polish alphabet and numbers
are permitted.

30 VerificationStreetPremiseNo string{1,64}
Flat number provided on the Service for automatic
verification of the contributor.
Only letters of the Polish alphabet and numbers
are permitted.

31 VerificationPostalCode string{1,64}
Postal code provided in the Service for automatic
verification of the contributor, format XX-XXX, e.g.
80-180.
Only numbers and the "-" sign are permitted.

32 VerificationCity string{1,64}
City specified in the Service for automatic
verification of the contributor, e.g. Warsaw.
Only letters of the Polish alphabet and numbers
are permitted.

85

Hash
order name type description

33 VerificationNRB string{1,26}
The bank account number provided on the Service
for automatic verification of the contributor, e.g.
88154010982001554242710005.
Only digits allowed.

35 RecurringAcceptanceState string{1,100}

Automatic payment terms and conditions
acceptance information indicating whether the
Customer has accepted the automatic payment
terms and conditions or whether acceptance must
be enforced on the part of the System. Field
required for automatic payments in the
WhiteLabel model of the payment service
provided by AP to the Customer (the Customer
pays a commission). The availability of the terms
and conditions can be checked by calling the
legalData method.
Allowed values:
NOT_APPLICABLE - acceptance of terms and
conditions not required (single payment or debit
action, i.e. recurringAction with AUTO or MANUAL
value)
ACCEPTED - declaration of acceptance of the
terms and conditions in the contractor's service
(to be provided with the
RecurringAcceptanceID)
PROMPT - on the card form the card enrolment
consent is proposed, its ticking initiates the
automatic payment
FORCE - consent to save the card is required on
the card form, otherwise payment is not possible.
NOTE: The availability of the
ACCEPTED/PROMPT/FORCE option depends on
business arrangements (in particular,
determination of the place of display of
consent/automatic payment service rules).

36 RecurringAction string{1,100}

Required field for automatic payments, specifying
the possible actions on an automatic payment.
Allowed values:
INIT_WITH_PAYMENT - activation of automatic
payment with payment for goods/services
INIT_WITH_REFUND - activation of automatic
payment followed by return of payment
AUTO - cyclical payment (debit without customer
involvement)
MANUAL - one-click payment (debit initiated by
the customer) NOTE: Option not available for BLIK
automatic payments (BLIK OneClick).
DEACTIVATE - deactivate automatic payment

37 ClientHash string{1,64}

Automatic payment identifier. This parameter
allows a payment instrument (e.g. Card, BLIK) to
be assigned to a Customer in an anonymised
manner. Based on it, the Partner can trigger
subsequent debits in the automatic payment
model.

38 OperatorName string{1,35}
The name of the operator of the telephone
number given.
Allowed values: Plus, Play, Orange, T-Mobile.

86

Hash
order name type description

39 ICCID string{12,19}
SIM card number of the phone number specified.
Allowed values (only digits allowed):
For Plus: 12 or 13 digits
For Play, Orange, T-Mobile: 19 digits

40 AuthorizationCode string{6}

A payment authorisation code entered on the
Service/System side (currently supported in BLIK).
Its use means that there is no need to redirect the
Customer to the Payment Channel page. It should
therefore only be entered via Pre-transaction.
Format dependent on the Payment Channel. For
BLIK carried out in the background (BLIK 0,
possibly BLIK OneClick): 6 digits.

41 ScreenType string{4,6}
Type of view of the payment authorisation form.
Acceptable values:
IFRAME - not supported
FULL.

42 BlikUIDKey string{1,64}
Alias UID key (used in BLIK). This is the unique
identifier of the user on the Service.
_Permissible alphanumeric Latin characters and
characters: .

43 BlikUIDLabel string{1,20}

Alias UID label (used in BLIK), which will be
presented to the Customer in the banking
application to distinguish accounts with the
Partner. It is recommended to use the login,
nickname or email address assigned to the
Customer's authorised account. If there is a
possibility of personal data (e.g. e-mail address
jan.kowalski@poczta.pl) make the data
confidential (by replacing 3 dots with some
characters, e.g. ja...ki@po...pl).
Acceptable alphanumeric Latin characters and
characters in the range: . : @ - , space.

44 BlikAMKey string{1,64}
Alias key of the bank's mobile application (used in
BLIK). This is the unique identifier of your BLIK
account.
Acceptable digits.

45 ReturnURL string{1,1000}

Dynamic payment return address starting with
http/https.
Acceptable valid URLs. May contain IP, port,
subdomain, Polish characters, and (after domain)
parameters and special characters:
,'+&;%$#_!=..

46 TransactionSettlementMode string{2,10}

Possibility to change the settlement of
transactions. Lack of parameter (backward
compatibility) treated as sending COMMON values.
The NONE parameter results in the transaction
being treated as a prepaid balance top-up and no
settlement.
Acceptable values:
COMMON
NONE

mailto:jan.kowalski@poczta.pl
mailto:ja...ki@po...pl

87

Hash
order name type description

47 PaymentToken string{1,100000}

Token used in Visa and Google Pay wallets placed
directly on the Partner's website (authorisation
without redirection to the System). In this case,
the Website integrates directly with the Visa
and/or Google API to retrieve the card handle. The
token obtained is transmitted to the Online
Payment System in a form encoded with the
Base64 transport protocol. NOTE: The parameter
is unnecessary if the selection of Payment
Channels (and logging into the wallet) is done
directly on the Online Payment System page..

48 DocNumber string{1,150} Financial document number.

49 RecurringAcceptanceID string{1,10}

The identifier of the automatic payment service
terms and conditions displayed on the Service and
accepted by the Customer. Required field for
automatic payments in the WhiteLabel model of
the payment service provided by AP to the
Customer (the Customer pays a commission). The
ID of the terms and conditions appropriate for the
selected language (and payment channel) should
be retrieved using the legalData method.

50 RecurringAcceptanceTime string{1,19}

Optional field. The moment of acceptance of the
Terms and Conditions by the Customer, this value
will be verified by the System with the time of the
Terms and Conditions with the given
RecurringAcceptanceID.
Example value: 2014-10-30 07:54:50 (Time in
CET).

51 DefaultRegulationAcceptanceState string{1,100}

Information about acceptance of the payment
service terms and conditions. Field required in the
WhiteLabel model of the payment service
provided by AP to the Customer (Customer pays
the commission). Its absence may be associated
with an error or display of the System's transition
page with the requirement to accept the terms
and conditions. The availability of the regulations
can be checked by calling the legalData method.
Allowed values:
ACCEPTED - acceptance of rules and regulations
made in the counterparty service (to be specified
together with
DefaultRegulationAcceptanceID).

52 DefaultRegulationAcceptanceID string{1,10}

Identifier of the terms and conditions of the
payment service provided by AP to the Customer
displayed on the Website and accepted by the
Customer. Field required in the WhiteLabel model
of the payment service provided by AP to the
Customer (Customer pays the commission). The ID
of the rules and regulations relevant for the
selected language (and payment channel) must
be retrieved using the legalData method.

53 DefaultRegulationAcceptanceTime string{1,19}

Optional field. The time when the rules and
regulations were accepted by the customer, this
value will be verified by the System with the time
of the rules and regulations with the specified
DefaultRegulationAcceptanceID; example value:
2014-10-30 07:54:50. (Time in CET)

88

Hash
order name type description

54 WalletType string{1,32}

The payment wallet type, determines the source
of the PaymentToken parameter (if it has been
sent).
_Available values are:
SDK_NATIVE - native card format (mobile SDK)
WIDGET - card widget (card format before the
start of the transaction) _

55 RecurringValidityTime string{10}

Expiry date of activated BLIK automatic payment,
format YYYY-MM-DD (example value: 2024-01-30).
If the parameter is missing, a default configuration
date set during integration (customarily indefinite)
will be proposed.

56 ServiceURL string{1,1000}

Parameter specifying the web address of the shop
from which the payment was launched, starting
with http/https. Acceptable valid URL. May contain
IP, port, subdomain, Polish characters, as well as
(after the domain) parameters and special
characters: ,'+&;%$#_!=

57 BlikPPLabel string{1,35}
Label of the BLIK recurring payment, displayed in
the mobile application when it is accepted. If the
parameter is missing, its default value will be used
(set during integration).

58 ReceiverNameForFront string{1,35}

Name of the BLIK payment recipient, displayed in
the mobile application when accepting a payment.
If the parameter is missing, its default value will
be used (customarily the Service URL). NOTE: The
service must be agreed with the business mentor.
Acceptable alphanumeric Latin characters,
characters in the range: ĘęÓóĄąŚśŁłŻżŹźĆćŃń-
/,!()=[]{};:.? and space.

59 AccountHolderName string{1,100} Name of the owner of the means of payment.

Product basket

Description of the product basket

The product basket is sent as a parameter (POST method) named Products. Its value is encoded with
the Base64 transport protocol.

Format before encoding (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <productList>
 <product>
 <subAmount>SubAmount1</subAmount>
 <params>Params1</params>
 </product>
 <product>
 <subAmount>SubAmount2</subAmount>
 <params>Params2</params>
 </product>
 …
 <product>
 <subAmount>SubAmountN</subAmount>

89

 <params>ParamsN</params>
 </product>
 </productList>

The productList node must contain at least 1 product element, each product node must contain
one subAmount and params element each.

The subAmount element must contain a positive product amount (the decimal separator is a dot
followed by two penny digits). The sum of the amounts of the subsequent products must be equal to
the amount specified in the Amount parameter (transaction amount).

If the above conditions are not met, the System will return an error.

Element Params

The params element can be used to convey product-specific information. The names of the
parameters and their meaning are subject to agreement in working form each time during integration.

Examples of product parameters and their meaning below.

In this case, the node contains the product name:

 <params>
 <param name="productName" value="Product name 1" />
 </params>

In this case, the node contains two values assigned to the product, which can denote, for
example, the type of product and its name:

 <params>
 <param name="productType" value="ABCD" />
 <param name="productName" value="Product name 1" />
 </params>

In the event that the Service has a balance in the System, and plans to make refunds to the
Customer of all or part of the amount paid for the designated product, it is obliged to transfer in
the product its unique identifier (parameter named productID with type string{1,36} (Latin
alphanumeric characters and characters allowed: _ and -)):

 <params>
 <param name="productID" value="12456" />
 </params>

If the Partner uses an extended structure (multiple settlement points), it is obliged to transmit
in each product the identifier of the settlement point (parameter named idBalancePoint with
type integer{1,10}):

 <params>
 <param name="idBalancePoint" value="12456" />

90

 </params>

In the event that the Partner uses billing MASS_TRANSFER, i.e:

each transaction is settled immediately upon deposit and

settlements are made at the product/billing point level (i.e. as many settlement transfers
are made after the deposit as products in the basket), and

no fixed billing data has been set (or not all billing data is set rigidly in the billing
configuration),

The partner must provide in each product the missing data for the billing of that product. The
available parameters that constitute the data are:

customerNRB - target account number for billing.
NRB format (26 digits with checksum). If, during integration, the use of non-Polish accounts is
established, then the field transfers IBAN and the expected data range of the field changes to:
alphanumeric Latin characters (min. 15, max. 32 characters). Specifying values in the IBAN
format will result in the need to specify in the product also the parameters swiftCode,
foreignTransferMode.

title - - The title of the product settlement transfer. In certain cases, independent of AP, the title
of the settlement transfer may be independently modified by the Bank from which the
settlement occurred.
Acceptable alphanumeric Latin characters and characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-,!()\"

receiverName - the name of the recipient of the transfer clearing the product.
Acceptable alphanumeric Latin characters and characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-/,!()=\[\]{};:?

Example of application of parameters to a product:

 <params>
 <param name="customerNRB" value="83109010980000000107285707" />
 <param name="title" value="Settlement of product X" />
 <param name="receiverName" value="John Smith" />
 </params>

In the Marketplace model, the Partner is obliged to provide a billing point identifier (parameter
named idBalancePoint of type integer{1,10}). This also applies to the balance crediting of the
settlement point.

91

Example of basket parameters:

 <params>
 <param name="idBalancePoint" value="12456" />
 <param name="productName" value="Balance transfer for Autopay" />
 </params>

Product basket display on the Payment Channel selection screen

If it has been established during the discussions concerning the product basket that its summary is to
be displayed on the System page (Payment Channel selection screen), the labels of each parameter
used in the basket can be specified. The System can use the default label of the parameter or can
adopt it at the start of the transaction.

The value of the title attribute will be displayed before the value of the product parameter.

Example of the title attribute

 <params>
 <param name="productName" value="Product name 1" title="Name"/>
 <param name="productType" value="ABCD" title="Type"/>
 </params>

Additional online communication options to the partner

Additional fields in the ITN/IPN message of the incoming transaction

Description

Instant notifications of a change in the status of a transaction may include additional fields (see
Schemes for Preauthorisation). Their occurrence is a
configuration issue, determined during integration (by default only the node is sent customerData).

Whether it is an ITN or IPN message is determined solely by the presence of a node product.

Full list of additional fields in the ITN/IPN message

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name type description

11 addressIP string{1,15}

The Customer's IP address as registered by
the System front-end, or the address
transmitted to the System in the
CustomerIP parameter, or the IP from which
the transaction was started in the System.

13 customerNumber string{1,35} Customer number in the service.

92

Hash
order name type description

21 title string{1,140}
Title of the payment. In certain cases,
beyond AP's control, the title of the transfer
may be modified independently by the Bank
where the customer's payment took place.

22 customerData-> fName string{1,128} Name of payer.

23 customerData-> lName string{1,128} Last name of payer.

24 customerData-> streetName string{1,128} Payer street name.

25 customerData->
streetHouseNo string{1,10} Payer's house number.

26 customerData->
streetStaircaseNo string{1,10} Payer staircase number.

27 customerData->
streetPremiseNo string{1,10} Payer premises number.

28 customerData-> postalCode string{1,6} Postcode of the payer's address.

29 customerData-> city string{1,128} Payer city.

30 customerData-> nrb string{1,26} Payer's bank account.

31 customerData-> senderData string{1,600} Payer data in undivided form.

32 verificationStatus enum
Element containing payer verification
status. It is an enum allowing values:
PENDING, POSITIVE and NEGATIVE.

nd. verificationStatusReasons list A list of reasons for negative or pending
verification. There can be many reasons.

93

Hash
order name type description

33 verificationStatus enum

Detailed reason in case of negative or
pending verification.
Allowed values for negative verification:
- NAME - name or surname does not match
- NRB - account number does not match
- TITLE - the title does not match
- STREET - the street name does not match
- HOUSE_NUMBER - house number not
correct
- STAIRCASE - staircase number not correct
- PREMISE_NUMBER - the premises number
is not correct
- POSTAL_CODE - postal code does not
match
- CITY - city disagrees
- BLACKLISTED - the account from which the
payment was made is blacklisted
- SHOP_FORMAL_REQUIREMENTS - service
verified did not meet formal conditions

Allowed values for pending verification:
- NEED_FEEDBACK - waiting for the service
to meet the formal conditions is in progress.
NOTE: To count the Hash values, the values
of the following nodes are taken:
verificationStatusReasons,
verificationStatusReason.

60 startAmount amount

The amount of the transaction stated in the
Payment Link (does not include the amount
of the commission charged to the Customer,
if any). The sum of the customer's
commission and startAmount is in the field
amountas this is the resulting transaction
value). A full stop is used as decimal
separator - '.' Format: 0.00; maximum
length: 14 digits before the dot and 2 after
the dot.

70 recurringData->
recurringAction string{1,100}

Action in the automatic payment process
(meaning and allowed values are described
in section Definitions).

71 recurringData-> clientHash string{1,64}
Automatic payment identifier generated by
the AP and transmitted to the Partner upon
successful activation of the automatic
payment.

72 recurringData->
expirationDate string{14}

Expiry time of the automatic payment,
transmitted in the format
YYYYMMDDhhmmss. (CET time)

94

Hash
order name type description

73 cardData-> index string{1,64}
Card index (if a card is used). Index
identifies a card with a given expiry date
(changing the date or card number changes
the value of this parameter).

74 cardData-> validityYear string{4} Card validity in YYYY format (if a card was
used).

75 cardData-> validityMonth string{4} Card validity in mm format (if card used).

76 cardData-> issuer string{1,64}

Card type (if a card is used).
Possible values:
- VISA
- MASTERCARD
- MAESTRO
- AMERICAN EXPRESS (currently not
supported)
- DISCOVER (currently not supported)
- DINERS (currently not supported)
- UNCATEGORIZED (unrecognized issuer)

77 cardData-> bin string{6}
First 6 digits of the card number (if a card is
used). Passed if the cardData-> mask
parameter is not passe

78 cardData-> mask string{4}
The last 4 digits of the card number (if a
card is used). Passed if the cardData->bin
parameter is not passed.

90 product-> subAmount amount

The product amount uses a full stop as
decimal separator - '.'
Format: 0.00; maximum length: 14 digits
before the dot and 2 after the dot.
Node only available in IPN communications.

91 product-> params list
Subsequent product parameters according
to the basket format in the transaction
start. Node only available in IPN messages.

NOTE: For counting the Hash values, the value attributes of the subsequent product.params
nodes are taken.

Example of ITN/IPN message with additional parameters (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transactionList>
 <serviceID>ServiceID</serviceID>
 <transactions>
 <transaction>
 <orderID>OrderID</orderID>
 <remoteID>RemoteID</remoteID>
 <amount>999999.99</amount>
 <currency>PLN</currency>

95

 <gatewayID>GatewayID</gatewayID>
 <paymentDate>YYYYMMDDhhmmss</paymentDate>
 <paymentStatus>PaymentStatus</paymentStatus>
 <paymentStatusDetails>PaymentStatusDetails</paymentStatusDetails>
 <addressIP>127.0.0.1</addressIP>
 <customerNumber>1111111</customerNumber>
 <title>title</title>
 <customerData>
 <fName>fName</fName>
 <lName>lName</lName>
 <streetName>streetName</streetName>
 <streetHouseNo>streetHouseNo</streetHouseNo>
 <streetStaircaseNo>streetStaircaseNo</streetStaircaseNo>
 <streetPremiseNo>streetPremiseNo</streetPremiseNo>
 <postalCode>postalCode</postalCode>
 <city>city</city>
 <nrb>nrb</nrb>
 <senderData>senderData</senderData>
 </customerData>
 <verificationStatus>verificationStatus</verificationStatus>
 <verificationStatusReasons>
 <verificationStatusReason>reason1</verificationStatusReason>
 <verificationStatusReason>reason2</verificationStatusReason>
 <verificationStatusReason>reason3</verificationStatusReason>
 </verificationStatusReasons>
 <startAmount>999998.99</startAmount>
 <recurringData>
 <recurringAction>RecurringAction</recurringAction>
 <clientHash>ClientHash</clientHash>
 <expirationDate>YYYYMMDDhhmmss</expirationDate>
 </recurringData>
 <cardData>
 <index>Index</index>
 <validityYear>ValidityYear</validityYear>
 <validityMonth>ValidityMonth</validityMonth>
 <issuer>Issuer</issuer>
 <bin>BIN</bin>
 </cardData>
 <product>
 <subAmount>SubAmount</subAmount>
 <params>
 <param name="idBalancePoint" value="idBalancePoint"/>
 <param name="invoiceNumber" value="invoiceNumber"/>
 <param name="customerNumber" value="customerNumber"/>
 <param name="subAmount" value="SubAmount"/>
 </params>
 </product>
 </transaction>
 </transactions>
 <hash>Hash</hash>
 </transactionList>

Detailed description of the change in the verification status - for a transaction successfully completed
(positive or negative result)

96

Payment status
(paymentStatus)

Verification status
(verificationStatus)

Verification details
(verificationStatusReasons) Details

PENDING PENDING Empty
The customer
selected the
payment
method.

SUCCESS PENDING Empty

The transaction
has been paid,
the System is
waiting to
retrieve the
contributor's
details from the
account.

SUCCESS PENDING NEED_FEEDBACK

Autopay is
waiting for the
Partner to meet
the formal
conditions.

SUCCESS POSITIVE Empty The verification
was successful.

SUCCESS NEGATIVE List of reasons for NEGATIVE Negative
verification.

Detailed description of verification status change - for a transaction not completed correctly

Payment status
(paymentStatus)

Verification status
(verificationStatus)

Verification details
(verificationStatusReasons) Details

PENDING PENDING Empty
The customer
selected the
payment
method.

FAILURE PENDING Empty

The transaction
has not been
completed
correctly.
Verification
status will not
be provided.

Detailed transaction statuses

The ITN message for an incoming transaction contains, in addition to the payment status (field
paymentStatus), a detailed description of this status (field paymentStatusDetails). This
description is to be treated as informative, the list of its allowed values is constantly growing and the
appearance of new values may not imply non-acceptance of the ITN message.

Transaction status values - General statuses (independent of the payment channel)

97

Field value Meaning of the field

AUTHORIZED transaction authorised by a Payment Channel

ACCEPTED transaction approved by the Call Centre (e.g. as a result of a successful
complaint)

REJECTED Transaction interrupted by a Payment Channel (bank/clearing agent)

REJECTED_BY_USER transaction terminated by Customer

INCORRECT_AMOUNT an amount different from that indicated at the start of the transaction
was paid

EXPIRED past due transaction

CANCELLED
a transaction cancelled by the Partner Service or the Call Centre (e.g. at
the request of the Customer). It is not possible to start a new transaction
or to continue a previously started transaction with the same OrderID

RECURSION_INACTIVE cyclical payment activity error

ANOTHER_ERROR another error occurred while processing the transaction

Transaction status values - Card statuses

Field value Meaning of the field
Optional card
organisation
error code

CONNECTION_ERROR error with connection to payment card
issuer's bank ✔

CARD_LIMIT_EXCEEDED error in payment card limits ✔

SECURITY_ERROR security error (e.g. incorrect cvv) ✔

DO_NOT_HONOR Refusal of authorisation at bank; suggested
customer contact with card issuer ✔

THREEDS_NEGATIVE transaction unsuccessful in 3DS ✔

CARD_EXPIRED card not valid ✔

INCORRECT_CARD_NUMBER incorrect card number ✔

FRAUD_SUSPECT suspected fraud (e.g. lost card, etc.) ✔

STOP_RECURRING recurrence impossible due to cancellation of
customer instructions ✔

VOID transaction abandoned or communication
error ✖

UNCLASSIFIED other errors ✔

Transaction status values - BLIK transaction specific statuses

98

Field value Meaning of the field

INSUFFICIENT_FUNDS

Lack of funds. Recommended message to be displayed
to the customer stating:
Payment unsuccessful - bank refusal. Check the reason
for refusal in the bank application.
If the reason is that you are over the limit, you can
increase it by contacting your bank.

LIMIT_EXCEEDED

Limits error (e.g. amounts). Recommended message to
be displayed to the customer:
Payment unsuccessful - bank refusal. Check the reason
for refusal in the bank application.
If the reason is that you are over the limit, you can
increase it by contacting your bank.

BAD_PIN an incorrect PIN was entered when confirming the
transaction

ISSUER_DECLINED, USER_DECLINED,
SEC_DECLINED transaction terminated by customer

TIMEOUT and AM_TIMEOUT timeout in communication with the bank's mobile
application

USER_TIMEOUT timeout waiting for the customer to confirm the
transaction

Immediate notification of a change in product status (IPN)

In the case of a Partner using extended-structure (Product basket with multiple billing points), the
System provides independent notification of status changes for each product. Such a service makes
sense if individual billing points should receive their own notifications. In this case, the IPN
configuration (address for notifications, fields to be included in the message, etc.) is stored precisely
at the billing point configuration level. The structure of the IPN is similar to that of the ITN (extended
only by a product node similar to the one described in section Additional fields in ITN message/IPN
input transaction, completed only by the repetition of the subAmount in the params). IPN example in
subsection Additional fields in the ITN/IPN message of an input transaction).

Immediate notification of a change in the status of a settlement transaction (ISTN)

It is possible to provide messages about all disbursements (settlements, balance disbursements and
refunds) made by the System as part of the payment service. As the service is not enabled by default,
the need for this service, together with the ISTN mailing address, must be requested by the Partner
during the requirements determination.

In the event of successful initiation of ISTN communication, the System immediately transmits
notifications of the fact of the ordering of the settlement transaction (withdrawals/refunds, if any) and
the change of its status. The confirmations are sent, to the address on the Partner's service server
established during the addition configuration of the Partner Service:

https://shop_name/receipt_of_settlement_information

99

This notification consists of the System sending an XML document containing the new transaction
statuses. The document is sent via the HTTPS protocol (default port 443). The document is sent by the
POST method, as an HTTP parameter named transactions. This parameter is stored using the Base64
transport encoding mechanism.

Document format (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transactionList>
 <serviceID>ServiceID</serviceID>
 <transactions>
 <transaction>
 <isRefund>true/false</isRefund>
 <productID>ProductID</productID>
 <orderID>OrderID</orderID>
 <orderOutID>OrderOutID</orderOutID>
 <remoteID>RemoteID</remoteID>
 <remoteOutID>RemoteOutID</remoteOutID>
 <amount>999999.99</amount>
 <currency>PLN</currency>
 <transferDate>YYYYMMDDhhmmss</transferDate>
 <transferStatus>TransferStatus</transferStatus>
<transferStatusDetails>TranasferStatusDetails</transferStatusDetails>
 <title>Title</title>
 <receiverBank>ReceiverBank</receiverBank>
 <receiverNRB>ReceiverNRB</receiverNRB>
 <receiverName>ReceiverName</receiverName>
 <receiverAddress>ReceiverAddress</receiverAddress>
 <senderBank>SenderBank</senderBank>
 <senderNRB>SenderNRB</senderNRB>
 </transaction>
 </transactions>
 <hash>Hash</hash>
 </transactionList>

Returned parameters

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID NO string{1,10}
The Partner Service ID, assigned during service registration,
uniquely identifies the Partner Service in the Online Payment
System.

2 isRefund NO Boolean Information on whether the ISTN relates to the return of a
transaction (true) or normal settlement (false).

3 productID NO string{1,36}
The identifier of the billed product from the product basket of
the incoming transaction, the field value must be unique for the
Partner Service.

4 orderID NO string{1,32}
Input transaction identifier of up to 32 Latin alphanumeric
characters, the field value must be unique for the Partner
Service.

100

Hash
order name required type description

5 orderOutID NO string{1,32}
Output transaction identifier of up to 32 alphanumeric Latin
characters. The field can be assigned by the Service (in the case
of a billing order) or by the Online Payment System.

6 remoteID NO string{1,20}
Alphanumeric identifier of the incoming transaction assigned by
the Online Payment System (given if one payment is linked to
the settlement).

7 remoteOutID NO string{1,20} The alphanumeric identifier of the settlement transaction
assigned by the Online Payment System.

8 amount YES amount
Transaction amount. A dot - '.' - is used as decimal separator.
Format: 0.00; maximum length: 14 digits before the dot and 2
after the dot.

9 currency YES string{1,3} Transaction currency.

40 transferDate NO string{14}
The time when the transaction was authorised, transmitted in
the format YYYYMMDDhhmmss. (CET time).
Only occurs for transferStatus=SUCCESS.

41 transferStatus YES enum

Authorisation status of the settlement transaction.
It adopts the following values:
- PENDING - transfer pending
- SUCCESS - transfer ordered to bank
- FAILURE - transfer cannot be made, e.g. wrong account
number

42 transferStatusDetails NO enum

Detailed transaction status, value can be ignored by the Partner
Service.
It accepts the following values (the list can be extended):
- AUTHORIZED - transaction submitted for execution at bank
- CONFIRMED - transaction confirmed at the bank (money
physically sent)
- CANCELLED - transaction cancelled by the Partner Service or
Call Centre (e.g. at the request of the Service)
- ANOTHER_ERROR - another transaction processing error has
occurred

43 title NO string{1,140}

Title of the settlement transfer. In certain cases, beyond AP's
control, the title of the settlement transfer may be modified
independently by the Bank from which the settlement took
place.
Acceptable alphanumeric Latin characters and characters in the
range: ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-
/,!@#%\^*()_=+\[\]{};:?, where the "/" sign will be
replaced by a "-" for outgoing transactions.

44 receiverBank NO string{1,64} The name of the bank to which the System has made the
transfer.

45 receiverNRB NO string{26} The bank account number of the recipient of the transfer.

46 receiverName NO string{1,140}
Name of the recipient of the transfer.
Acceptable alphanumeric Latin characters and characters in the
range: ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-
/,!@#%\^*()_=+\[\]{};:?

47 receiverAddress NO string{1,140}
Transfer recipient address.
Acceptable alphanumeric Latin characters and characters in the
range: ĘęÓóĄąŚśŁłŻżŹźĆćŃń\\s.-
/,!@#%\^*()_=+\[\]{};:?

48 senderBank NO string{1,64} The name of the bank through which the System made the
transfer.

49 senderNRB NO string{26} Bank account number of the sender of the transfer.

101

Hash
order name required type description

nd. hash YES string{1,128}
Value of message digest function calculated as described in
section Security of transactions. Mandatory verification of
compliance of the calculated abbreviation by the Service.

Response to notification

In response to the notification, a text in XML format (not Base64 encoded) is expected, returned by
the Partner Service in the same HTTP session, containing an acknowledgement of the receipt of the
transaction status.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <confirmationList>
 <serviceID>ServiceID</serviceID>
 <transactionsConfirmations>
 <transactionConfirmed>
 <remoteOutID>RemoteOutID</remoteOutID>
 <confirmation>Confirmation</confirmation>
 </transactionConfirmed>
 </transactionsConfirmations>
 <hash>Hash</hash>
 </confirmationList>

The confirmation element is used to convey the status of verification of the authenticity of the
transaction by the Partner Service. The value of the element is determined by checking the
correctness of the value of the serviceID parameter, as well as verifying that the calculated hash
matches the value passed in the hash field.

Two values are provided for this element:

a) CONFIRMED - the hash parameter is consistent - the transaction authentic;

b) NOTCONFIRMED - the hash parameter is inconsistent - transaction not authentic;

If there is no correct response to the notifications sent, the System will make further attempts to
communicate a new status after a specified time. The Partner Service should perform its own
business logic, only after the first message about a given payment status.

TIP: It is worth taking a look at ITN/ISTN/IPN/RPAN/RPDN message retry scheme.

Detailed description of the behaviour and change of settlement statuses (transferStatus)

In the basic model, the System will only provide a status of SUCCESS, however, more accurate
notification is possible. The full option should be notified during integration and involves the following
pattern of transitions statuses.

ZAn order for a settlement transaction sends a status of PENDING. Later, the system will deliver

102

SUCCESS or FAILURE. For a transaction for which SUCCESS status has occurred, there should no
longer be a change of status to FAILURE. There may, however, be a change in detail status
(subsequent detail status change messages are informational only and should not entail the re-
execution of any business logic).

In special cases (e.g. an error at the bank), a transaction that was originally confirmed may be passed
on for re-execution and therefore change its status to PENDING and back to SUCCESS.

Another special case could be a FAILURE status (e.g. after an internal System error), then replaced
by a SUCCESS status.

Additional services

Querying the list of currently available Payment Channels

Description

In order to build a payment method selection view on the Website, the System allows the current list
of payment channels to be queried remotely. For this purpose, call the method gatewayList
(https://{gate_host}/gatewayList/v3) with the relevant parameters (in JSON format). All parameters
are transmitted using REST technology. The protocol is case sensitive in both parameter names and
values. The values of the passed parameters should be encoded in UTF-8.

List of available parameters

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES integer Partner Service ID.

2 MessageID YES string{32}
Pseudo-random message identifier with a length of
32 Latin alphanumeric characters (e.g. based on
UID). The field value must be unique for the Partner
Service.

3 Currencies YES string{0,1000}
List of currencies whose list of available channels is
to be returned.
The list should be a minimum of one element.
Acceptable values are: PLN, EUR, GBP, USD.

4 Language YES string{2}
Language in which descriptions of payment
methods will be returned.
Acceptable values:
PL,EN,DE,FR,IT,ES,CS,RO,SK,HU,UK,EL,HR,SL,TR,BG.

5 Hash YES string{64} Value of message digest function calculated as
described in section Security of transactions

Example message

{

103

 "ServiceID": 47498,
 "MessageID": "11111111111111111111111111111111",
 "Currencies":"PLN,EUR",
 "Language": "PL",
 "Hash": "306519f632e53a5e662de0125da7ac3f8135c7e4080900f2b145d4b25ff1b55d"
}

Response to request

In response to a request, 2 lists of definitions are returned in the same HTTP session:

a) Payment channels (node gatewayList)

b) Payment groups (node gatewayGroups)

Below is a detailed description of the message returned:

name required type description

1 result YES string{1,5}
Response status.
Acceptable values:
- OK
- ERROR

2 errorStatus YES string{1,100} Error status, to be filled in in the event of
an error (otherwise null).

3 description YES string{1,500} Description of the error, to be filled in in the
event of an error (otherwise null).

4 gatewayGroups YES list A list containing payment groups.

4.1 type YES string{1,20} Payment group type. Each payment
definition is assigned to one of the types.

4.2 title YES string{1,50} Name of payment group.

4.3 shortDescription NO string{1,200} Brief description of the payment group.

4.4 description NO string{1,1000} Detailed description of the payment group.

4.5 order YES integer Recommended order of display of payment
groups.

4.6 iconUrl NO string{1,100} Address from which the payment group
logo can be downloaded.

5 serviceID YES string{1,10} Partner Service Identifier; derived from the
method request.

6 messageID YES string{32} Message identifier derived from the method
request.

7 gatewayList NO list
List containing further payment channels
(empty if no payment channels are
configured).

104

name required type description

7.1 gatewayID YES integer{1,5}
Identifier of the Payment Channel with
which the Customer can settle the
payment.

7.2 name YES string{1,200} The name of the Payment Channel that can
be displayed in the list of available banks.

7.3 groupType NO string{1,30}
Type, used to group Payment Channels in
their list.
The parameter takes values from the node
gatewayGroups.

7.4 bankName NO string{1,32} Bank name.

7.5 iconUrl NO string{1,100} Address from which the Payment Channel
logo can be downloaded.

7.6 state YES string{1,64}

Information on the status of channel
availability.
Accepts values:
- OK - channel available
- TEMPORARY_DISABLED - channel
temporarily unavailable (e.g. due to bank
work)
- DISABLED - channel unavailable (service
suspended for an extended period)

7.7 stateDate NO string{1,19}
Time of last update of the status of the
Payment Channel; example value:
2023-08-28 00:00:01. (CET time)

7.8 shortDescription NO string{1,200}
Optional field containing a brief description
of the payment channel. Can be displayed
when selected.

7.9 description NO string{1,1000} Optional field describing the payment
channel in detail (can be with HTML tags).

7.10 descriptionUrl NO string{1,200}
Optional field containing a link to an
external page detailing the payment
channel.

7.11 availableFor YES string{2,10}

The value of this field indicates for which
customer the payment channel is intended:
B2C - payment method for individuals
B2B - payment method for companies
BOTH - payment method for all customers.
Based on this parameter, it should be
decided whether a payment channel should
be presented to the customer.

105

name required type description

7.12 requiredParams NO lista

A list of parameters required when
selecting a payment method. For example,
the start of a transaction for a payment
method from the B2B group should include
the parameter Nip. The required
parameters are described in section:
Starting a transaction with additional
parameters.
Currently, such parameters can be: Nip
and AccountHolderName.

7.13 mcc NO object

Merchant Category Code. Optional node,
additionally configurable. In special cases,
for sites containing products from different
categories, we can return a list of allowed
and forbidden MCC codes so that the
Merchant on his side can decide whether
the payment method can be presented or
not.

7.13.1 allowed NO list List of permitted MCC codes.

7.13.2 disallowed NO list List of prohibited MCC codes.

7.14 inBalanceAllowed NO boolean

Information on whether the channel can be
used (after business arrangements) for
prepaid balances (start of transaction with
TransactionSettlementMode=NONE
parameter).

7.15 minValidityTime NO integer
Minimum transaction validity time in
minutes. Appears for channels where it
takes longer than usual to establish
payment status.

7.16 order YES integer Recommended order of display of payment
method.

7.17 currencies YES lista
A list containing the currencies available for
the payment channel, with limits on the
amounts.

7.17.1 currency YES string{3}

The currency that can be paid by this
channel. If multiple currencies are available
for a payment channel, the list will contain
more than one item.
Acceptable values only: PLN, EUR, GBP and
USD.
For counting the Hash values, the values of
the following nodes are taken currencies.

106

name required type description

7.17.2 minAmount NO amount

The minimum amount of a transaction that
can be paid through this channel. A full stop
is used as decimal separator - '.' Format:
0.00; maximum length: 14 digits before the
dot and 2 after the dot. The field is present
only for some channels, the value is
expressed in the currency of the field
currency.
For counting the Hash values, the values of
the following nodes are taken currencies.

7.17.3 maxAmount NO amount

The maximum amount of a transaction that
can be paid through this channel. A full stop
is used as decimal separator - '.' Format:
0.00; maximum length: 14 digits before the
dot and 2 after the dot. The field is present
only for some channels, the value is
expressed in the currency of the field
currency.
For counting the Hash values, the values of
the following nodes are taken currencies.

7.18 buttonTitle YES string
Suggested message that should present on
the 'pay' button after selecting a payment
channel.

Example response

{
 "result": "OK",
 "errorStatus": null,
 "description": null,
 "gatewayGroups": [
 {
 "type": "PBL",
 "title": "Internet transfer",
 "shortDescription": "Select the bank from which you want to order the
payment".,
 "description": null,
 "order": 1,
 "iconUrl": null
 },
 {
 "type": "FR",
 "title": "Transfer details",
 "shortDescription": "Order a transfer using the details provided",
 "description": null,
 "order": 2,
 "iconUrl": null
 },
 {
 "type": "BNPL",
 "title": "Buy now, pay later",
 "shortDescription": "Buy now, pay later",
 "description": null,
 "order": 3,

107

 "iconUrl": null
 }
],
 "serviceID": "10000",
 "messageID": "2ca19ceb5258ce0aa3bc815e80240000",
 "gatewayList": [
 {
 "gatewayID": 106,
 "name": "PBL test payment",
 "groupType": "PBL",
 "bankName": "NONE",
 "iconURL": "https://testimages.autopay.eu/pomoc/grafika/106.gif",
 "state": "OK",
 "stateDate": "2023-10-03 14:35:01",
 "description": "Test payment",
 "shortDescription": null,
 "descriptionUrl": null,
 "availableFor": "BOTH",
 "requiredParams": ["Nip"],
 "mcc": {
 "allowed": [1234, 9876],
 "disallowed": [1111]
 },
 "inBalanceAllowed": true,
 "minValidityTime": null,
 "order": 1,
 "currencies": [
 {
 "currency": "PLN",
 "minAmount": 0.01,
 "maxAmount": 5000.00
 }
],
 "buttonTitle": "Pay"
 },
 {
 "gatewayID": 9,
 "name": "Transfer from another bank",
 "groupType": "FR",
 "bankName": "BANK TEST",
 "iconURL": "https://testimages.autopay.eu/pomoc/grafika/9.gif",
 "state": "OK",
 "stateDate": "2023-10-03 14:35:02",
 "description": "Fast transfer",
 "shortDescription": "Fast transfer",
 "descriptionUrl": null,
 "availableFor": "BOTH",
 "requiredParams": [],
 "mcc": null,
 "inBalanceAllowed": true,
 "minValidityTime": null,
 "order": 2,
 "currencies": [
 {
 "currency": "PLN"
 }
],
 "buttonTitle": "Generate transfer details"
 },
 {
 "id": 701,
 "name": "Pay later with Payka",

108

 "groupType": "BNPL",
 "bankName": "NONE",
 "iconUrl": "https://testimages.autopay.eu/pomoc/grafika/701.png",
 "state": "OK",
 "stateDate": "2023-10-03 14:37:10",
 "description": "<div class=\"payway_desc\"><h1>Cost details</h1><p>Pay later
- one-off up to 45 days (...). Offer details at: <a href="?r="https://payka.pl\"
target=\"_blank\">Payka.pl</p></div>",
 "shortDescription": "Pay later - in one go up to 45 days or in several equal
instalments",
 "descriptionUrl": null,
 "availableFor": "B2C",
 "requiredParams": [],
 "mcc": null,
 "inBalanceAllowed": false,
 "minValidityTime": 60,
 "order": 3,
 "currencies": [
 {
 "currency": "PLN",
 "minAmount": 49.99,
 "maxAmount": 7000.00
 }
],
 "buttonTitle": "Pay"
 }
]
}

NOTE: The result of the method query should be refreshed every minute (calling gatewayList
too often will increase the load on both systems without bringing much benefit).If there is no or
an incorrect response, the last known and correct configuration of the Payment Channels should
be displayed. This is the second reason to keep a temporary copy of the gatewayList on the
Partner Service. An invalid response should be regarded as an empty response, a timeout, or an
empty list of gatewayGroups or gatewayList nodes.

Requesting a list of currently available formal consents

Description

A description of the integration that allows the use of a payment list embedded in the service (or
mobile app), without transition steps. In some cases, instead of a transition step, the standard
behaviour of the system provides for a blocked start of the transaction.

The relevant formal content (i.e. information clauses and, if applicable, terms and conditions) should
be displayed already at the time of selecting the payment method, and then confirmation of their
display and, if applicable, acceptance (in the form of identifiers) should be sent to the Online Payment
System.

The system allows the current list of obligations and related formal content to be queried remotely. To
do this, call the legalData method (https://{gate_host}/legalData) with the appropriate parameters
(in JSON format).

109

TIP: All parameters are transmitted using REST technology. The protocol is case-sensitive in
both names and parameter values. The transmitted parameter values should be encoded in
UTF-8.

List of available parameters

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES integer Partner Service ID.

2 MessageID YES string{32}
Pseudo-random message identifier with a length
of 32 Latin alphanumeric characters (e.g. based
on UID). The field value must be unique for the
Partner Service.

3 GatewayID YES integer{1,5} Identifier of the Payment Channel through which
the Customer intends to settle the payment.

4 Language YES string{2}

The language in which the content on the Website
is presented.
Acceptable values PL, EN, DE, CS, ES, FR, IT, SK,
RO, HU, UK.
The use of values other than PL should be
confirmed during integration and depends on the
actual choice (by the customer) of language in
the Service.

nd. Hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

Example message

 {
 "ServiceID": 102422,
 "MessageID": "11111111111111111111111111111111",
 "GatewayID": 1500,
 "Language": "PL",
"Hash":"61789013d932e2bc728d6206f7e9222b93e3176f7f07f6aa8cce1ccd65afaf0d"
 }

List of returned parameters

In response to the request, a list is returned (in the same HTTP session), containing further formal
content in the form of: ID, type and wording of the content, its location in the Service, address to the
rules and other additional information.

110

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 result YES string{1,5}
Response status.
Acceptable values:
- OK
- ERROR

2 errorStatus YES string{1,100} Error status, to be filled in in the event of
an error (otherwise null).

3 description YES string{1,500} Description of the error, to be filled in in the
event of an error (otherwise null).

4 serviceID YES string{1,10} Partner Service Identifier; derived from the
method request.

5 messageID YES string{32}
Pseudo-random message identifier of 32
Latin alphanumeric characters in length
(e.g. based on UID). Derived from the
method request.

6 gatewayID YES integer{1,5}
Identifier of the Payment Channel with
which the Customer can settle the
payment.

7 language YES string{2} The language in which the System returns
content (clauses and regulations).

8 serviceModel YES string{1,20}

A field to denote the model in which the
service works, for possible future guidance
based on these values (currently with
values: MERCHANT, PAYER). It should be
ignored at this point.

nd. regulationList YES list A list containing the formal content
available for the payment channel.

9 regulationID YES integer{1,10}

Formal content identifier, which (if accepted
by the customer) should be passed in the
start parameter
DefaultRegulationAcceptanceID or
RecurringAcceptanceID (respectively for
the type DEFAULT and RECURRING).
The method of acceptance is determined by
the fields showCheckbox and
isCheckboxRequired. NOTE: This value
may repeat for calls with different
GatewayIDas the regulations are
attributed to a group of payment channels
rather than individual channels.

111

Hash
order name required type description

10 type YES string{1,64}

Type of formal obligation.
Projected values:
- DEFAULT - clause(s) and payment terms
and conditions in the service model
provided by AP to the customer
- RECURRING - clause(s) and the terms
and conditions of the automatic payment.
Value only available if an automatic
payment service is configured
- PSD2 - clause dedicated to PSD2-type
channels (value not used at the moment)
- RODO - information clause on processing
of personal data
- PRIVACY - information clause on privacy
policy

11 url NO string{1,500}

AAddress to the terms and conditions file
(to be embedded in the Service itself). By
default, if this is a formal obligation, it
should be part of one of its clauses, i.e. the
field inputLabel. TIP: Appears when there
is a document associated with consent.

nd. labelList YES list
A list containing the clauses available for a
given formal obligation. The obligation may
require the display of one or more contents.

12 labelID YES integer{1,10} Clause identifier, transmitted for diagnostic
purposes (can be ignored by the Partner).

13 inputLabel YES string{1,500}
The content of the clause to be displayed
on the Service in conjunction with the
relevant regulationID. In some cases, it
may include a link to the regulations.

14 placement NO string{1,64}

Information suggesting where to place
clauses.
Current values:
- - TOP_OF_PAGE - at the top of the site
(e.g. near the logo/ top banner)
- NEAR_PAYWALL - around the list of
payment channels (directly above, below or
beside)
- ABOVE_BUTTON - above the "Start
payment" button
- BOTTOM_OF_PAGE - at the very bottom of
the page (usually refers to RODO, PRIVACY
information clauses)

15 showCheckbox YES boolean
Information on whether a clause should be
displayed next to a checkbox for user
acceptance.

112

Hash
order name required type description

16 checkboxRequired YES boolean

Information on whether the checkbox
displayed must be ticked by the user to
proceed to payment. NOTE: If the value is
true, the 'Start payment' button should be
blocked until the checkbox is ticked.

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. Mandatory verification of
compliance of the calculated
abbreviation by the Partner Service.

Example response

 {
 "serviceID": "102422",
 "messageID": "11111111111111111111111111111111",
 "gatewayID": "1500",
 "language": "PL",
 "serviceModel": "PAYER",
 "regulationList": [
 {
 "regulationID": 6288,
 "type": "RECURRING",
 "url": "https://host/path?params",
 "labelList": [
 {
 "labelID": 1,
 "inputLabel": "\r\nI have read
and accept <a id=\"regulations_pdf\" target=\"_blank\"
href=https://{gate_host}/path?params>Regulations for the payment services and <a
class=\"privacy-policy\" href=\"https://{gate_host}/polityka-prywatnosci.pdf\"
target=\"_blank\">Privacy Policy\r\nI want the service to be provided
without delay and, in the event of withdrawal, I know that I will not be reimbursed for
the services provided at my request until the withdrawal has taken place\r\n",
 "placement": "ABOVE_BUTTON",
 "showCheckbox": true,
 "checkboxRequired": true
 }
]
 },
 {
 "regulationID": 1,
 "type": "PRIVACY",
 "labelList": [
 {
 "labelID": 1,
 "inputLabel": "Autopay uses cookies. By
remaining on this website, you consent to the use of cookies in accordance with the <a
class=\"privacy-policy\" href="?r="https://{gate_host}/polityka-prywatnosci.pdf\"
target=\"_blank\">Autopay S.A. privacy policy. You can manage cookies yourself by
changing the settings of your browser or device software accordingly."
 "placement": "BOTTOM_OF_PAGE",
 "showCheckbox": false,
 "checkboxRequired": false
 }

113

]
 }
],
 "hash":
"61789013d932e2bc728d6206f7e9222b93e3176f7f07f6aa8cce1ccd65afaf0d",
 "result": "OK",
 "errorStatus": null,
 "description": null
 }

Description of response handling

As the formal requirements for the content of the clauses, their distribution and the method of
acceptance depend on the payment channel used, this method should be invoked each time it is
selected (hence the mandatory parameter of the GatewayID).

Relevant content and behaviour should be dynamically adapted to responses from the System (e.g. a
required checkbox with an information clause and a link to the terms and conditions should appear).
Of course, for the application to run quickly, the use of a cache to remember responses of recent calls
(e.g. for 1 minute) is welcome.

The consent displayed (and possibly approved) at the time of the transition to payment should be
confirmed in the System by attaching to the message of the start of the transaction in the start
parameter of its identifier (and thus the corresponding value of the regulationID).

Depending on the value of the type field of the regulations:

- for the displayed/accepted clause of type=DEFAULT:

a. to the parameter DefaultRegulationAcceptanceID its value of regulationID;

b. the DefaultRegulationAcceptanceState parameter should be set to ACCEPTED and

c. the DefaultRegulationAcceptanceTime parameter should be set to the value
corresponding to the moment when the consent is accepted by ticking the checkbox and
clicking the ‘Start payment’ button

- - for the displayed/accepted clause of type=RECURRING:

a. to the RecurringAcceptanceID parameter should be its regulationID value;

b. the RecurringAcceptanceState parameter should contain the value ACCEPTED and

c. the RecurringAcceptanceTime parameter should be set to the value corresponding
to the moment when the consent is accepted by ticking the checkbox and clicking the
"Start payment' button

114

NOTE: The fields (e.g. serviceModel, url, labelID) and field values (e.g. PSD2, RODO,
PRIVACY) of the legalData method are not required to be handled, but the possibility of their
occurrence in the request response should be foreseen.

Balance enquiry

Description

For all services, it is possible to query the current balance. For this purpose, the method balanceGet
https://{gate_host}/webapi/balanceGet with the relevant parameters. All parameters are passed via
the POST method (Content-Type: application/x-www-form-urlencoded). The protocol is
case-sensitive in both parameter names and values. The values of passed parameters should be
encoded in UTF-8.

List of available parameters for the current balance

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

1 BalancePointID YES string{1,10}

Settlement Point Identifier. NOTE: Required
one of the fields ServiceID or
BalancePointID.
Specifying both will result in processing of
the request being stopped and an http error.

2 MessageID YES string{32}
Pseudo-random message identifier with a
length of 32 Latin alphanumeric characters
(e.g. based on UID). The field value must be
unique for the Partner Service.

3 PlenipotentiaryID NO string{8,8}

Proxy ID. If present, the proxy's shared key
is used to calculate the Hash, rather than
the service/billing point's primary key. It also
affects the Hash in response to this
message. IMPORTANT! The use of this field
requires special business arrangements.

nd. Hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. A shared key assigned to the
configuration identifier used (Service or
Settlement Point) is used. Mandatory
verification of compliance of the
calculated abbreviation by the Service.

Response to request for current balance

In response to the request, a text is returned (in the same HTTP session) in XML format, containing an

115

acknowledgement of the operation for execution or a description of the error.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balanceGet>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <balance>Balance</balance>
 <currency>Currency</currency>
 <hash>Hash</hash>
 </balanceGet>

lub

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balanceGet>
 <balancePointID>BalancePointID</balancePointID>
 <messageID>MessageID</messageID>
 <balance>Balance</balance>
 <currency>Currency</currency>
 <hash>Hash</hash>
 </balanceGet>

List of response fields

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID. Derived from a method
request.

1 balancePointID YES string{1,10}
Settlement Point Identifier. Derived from a
method request. NOTE: One of the fields will
be returned ServiceID or BalancePointID.

2 messageID YES string{32}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based
on UID). Derived from the method request.

3 balance YES amount Balance value; a dot is used as decimal
separator - '.' Format: 0.00.

4 currency YES string{1,3}
Balance currency.
Acceptable values only: PLN, EUR, GBP and
USD.

116

Hash
order name required type description

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. A shared key assigned to the
configuration identifier used (Service or
Settlement Point) is used. Mandatory
verification of compliance of the
calculated abbreviation by the Partner
Service.

Balance supply

Description

For services that have a balance in the System, it is possible to perform a recharge operation for
future refunds. To do this, start the transaction with the TransactionSettlementMode parameter
with the value NONE and Amount indicating the recharge amount.

Using Pre-Transaction will allow the finished transaction to be simply delivered to the payer (e.g. by
providing the Partner's accounting address in CustomerEmail).

NOTE: The service must be agreed with the business custodian. In the Marketplace model, it
will furthermore be necessary to build a basket of products indicating which Settlement Point
(BalancePointID) is to be fed.

Balance withdrawals

Description

For services that have a balance in the System, it is possible to perform
an operation to withdraw all or part of the balance to a defined account for
settlement. For this purpose, it is necessary to call the method balancePayoff
(https://{gate_host}/settlementapi/balancePayoff) with the relevant parameters.

All parameters are passed via the POST method (Content-Type: application/x-www-form-urlencoded).
The protocol is case-sensitive in both parameter names and values. The values of passed parameters
should be encoded in UTF-8.

List of available parameters for balance withdrawals

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

NOTE: One of the fields ServiceID or BalancePointID is required. W
Specifying both will cause the request processing to stop and an http error.

117

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

1 BalancePointID YES string{1,10} Settlement Point Identifier.

2 MessageID YES string{32}

Pseudo-random message identifier with a
length of 32 alphanumeric characters of
the Latin alphabet (e.g. based on UID),
the field value must be unique and
indicate a specific payment order in the
Partner Service. Verification of
uniqueness on the part of the System
allows the MessageID to be repeated in
the event of communication problems
(repeating this value will result in
confirmation of the order, without re-
execution in the System).

3 Amount NO amount

Amount of withdrawal from the balance
(cannot be greater than the current
balance of the service); failure to specify
this parameter results in withdrawal of
the total funds accumulated on the
balance; a dot - '.' - is used as decimal
separator. Format: 0.00.

4 Currency NO string{1,3}

Payment currency. The default currency
is PLN (the use of another currency must
be agreed during integration). One
currency is supported within ServiceID.
Acceptable values only: PLN, EUR, GBP
and USD.

118

Hash
order name required type description

5 CustomerNRB NO string{26}

The account number to which the
balance withdrawal is to be made. By
default, the disbursement configuration
does not allow this value to be defined in
the method request balancePayoff.
Such a request must be made during
integration. NOTE: In some models, the
use of this field can only occur for
requests from a list of trusted IPs and the
use of one of 3 additional elements:
- securing the communication with a
client certificate or
- securing the communication with an
IPSec tunnel or
- use of the parameter value
CustomerNRB from the list of trusted
accounts
Failure to comply with them results in a
CUSTOMER_NRB_NOT_AUTHORIZED
error.
System panel administrators
(https://portal.autopay.eu/admin) can
update the trusted IP and NRB lists
themselves in the Access control
service configuration. Only digits are
allowed. If, during integration, the use of
accounts outside Poland was established,
then the field transfers IBAN and the
expected field data range changes to:
alphanumeric Latin characters (min. 15,
max. 32 characters).

6 SwiftCode NO string{8,11}

The swift code corresponding to the
account number given.
Only digits allowed. Parameter to be
provided if the use of non-Polish accounts
was established during integration.

https://portal.autopay.eu/admin

119

Hash
order name required type description

7 ForeignTransferMode NO string{4,5}

The system by which the foreign
settlement transfer is to be made:
- SEPA (Single Euro Payments Area) -
possible transfers in Euro currency within
the European Union Member States, as
well as other countries within the Old
Continent, e.g. Iceland, Liechtenstein,
Norway, Switzerland, Monaco or Andorra,
- SWIFT - foreign transfers not feasible
with SEPA (e.g. different currency than
Euro), involves higher transfer costs than
with SEPA.
Acceptable values: SEPA and SWIFT.
Parameter to be provided if the use of
accounts outside Poland has been
established during integration.

8 ReceiverName NO string{35}

The name of the payee of the balance
withdrawal. By default, the disbursement
configuration does not allow this value to
be defined in the method request
balancePayoff.
Such a request must be made during
integration.
Acceptable alphanumeric Latin
characters and characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\s.-/,!()=[]{};:?

9 Title NO string{32}

Balance disbursement title. By default,
the disbursement configuration does not
allow this value to be defined in the
method request balancePayoff. Such a
request must be made during
integration.
In certain cases, beyond the control of
the AP, this title may be independently
modified by the Bank.
Acceptable alphanumeric Latin
characters and characters in the range:
ĘęÓóĄąŚśŁłŻżŹźĆćŃń\s.-/,!()", where the
"/" sign will be replaced by a "-" for
outgoing transactions.

10 RemoteRefID NO string{1,20}

The alphanumeric identifier of the
incoming transaction assigned by the
System and transmitted to the Partner in
the ITN message of the incoming
transaction. The value in this message is
used to indicate the payment instrument
(card, account, etc.) to be used to make
the withdrawal.

120

Hash
order name required type description

11 InvoiceNumber NO string{1,100}
The number of the financial document in
the Service.In this message, the value is
used to indicate the correction invoice
associated with the payment.

12 PlenipotentiaryID NO string{8,8}

Proxy ID. If present, the proxy's shared
key is used to calculate the Hash, rather
than the service/billing point's primary
key. It also affects the Hash in response
to this message. IMPORTANT! The use
of this field requires special business
arrangements.

nd. Hash YES string{1,128}

The shared key assigned to the
configuration identifier used (Service or
Settlement Point) is used. Value of
message digest function calculated as
described in section Security of
transactions. Mandatory verification
of compliance of the calculated
abbreviation by the Service.

Response to request

Upon receipt of a balance withdrawal request, the System performs an initial verification against the
fields and their values sent in the message and saves the order for execution. In response to the
request, an XML-formatted text is returned (in the same HTTP session), containing a confirmation that
the order has been saved in the queue for execution or a description of the error (the structure of the
error message is described in section Error messages.

NOTE: Confirmation of receipt of an order is not equivalent to its actual execution. A balance
withdrawal can be processed up to 30 minutes after the withdrawal request is sent and may not
always be successful. In the event of problems encountered during the processing of a balance
withdrawal (e.g. insufficient funds in the balance), a report is sent the following working day
containing information about the balance withdrawals that failed.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balancePayoff>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <hash>Hash</hash>
 </balancePayoff>

or

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <balancePayoff>

121

 <balancePointID>BalancePointID</balancePointID>
 <messageID>MessageID</messageID>
 <hash>Hash</hash>
 </balancePayoff>

Description of the fields

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID. Derived from a method
request.

1 balancePointID YES string{1,10}
Settlement Point Identifier. Derived from a
method request. NOTE: One of the fields will
be returned ServiceID or BalancePointID.

2 messageID YES string{32}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based
on UID). Derived from the method request.

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. Mandatory verification of
compliance of the calculated
abbreviation by the Partner Service.

NOTE: All responses other than those assumed (i.e. with invalid fields, in particular an empty or
invalid hash) may be considered an error. In the event that the System authorises the sender of
a return message but the operation fails, the response will follow the pattern described in Error
messages. In the event of a communication error or insufficient balance (e.g.
ON_DEMAND_ERROR), the order can be retried. If the balance is blocked (BALANCE_DISABLED)
or the configuration is not active (PARTNER_DISABLED), the order should not be renewed.

IMPORTANT! In the event of an error returned in response to a balance withdrawal request,
the request can be retried, but please note that any withdrawal request not ending in an error
can be executed. In case of connection problems, exceeding the maximum response time, the
request can be repeated with the same MessageID without fear of duplicating the order.
In the case of a blocked balance (BALANCE_DISABLED) or inactive configuration
(PARTNER_DISABLED), the request should not be renewed. 3 errors in a row (regardless of the
cause) will block the on-demand disbursement service for the specified message sender IP for
10 minutes - calls during this time for this IP will end with a TEMPORARY_DISABLED error.

Transaction refunds

Description

122

For services with a balance in the System, it is possible to perform the operation of returning to the
Customer the whole or part of the amount paid for the indicated transaction. A successful refund of
the whole transaction can be performed once (in case of a repeated attempt to order a refund of the
same transaction, the System returns a properly described error). Refunds of part of the amount of a
transaction can be performed on it multiple times, as long as their sum does not exceed the amount
of the deposit.

To perform a transaction refund, call the method transactionRefund
(https://{gate_host}/settlementapi/transactionRefund) with the relevant parameters. All parameters
are passed via the POST method (Content-Type: application/x-www-form-urlencoded). The
protocol is case-sensitive in both the names and values of the parameters. The values of the passed
parameters should be encoded in UTF-8.

List of available parameters

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 MessageID YES string{32}

Pseudo-random message identifier with a length of
32 alphanumeric characters of the Latin alphabet
(e.g. based on UID), the field value must be unique
and indicate a specific payment order in the
Partner Service. Verification of uniqueness on the
part of the System allows the MessageID to be
repeated in the event of communication problems
(repeating this value will result in confirmation of
the order, without re-execution in the System).

3 RemoteID YES string{1,20}
The alphanumeric identifier of the returned input
transaction assigned by the System and passed to
the Partner in the ITN message of the input
transaction.

4 Amount NO amount

Amount of withdrawal from the balance (cannot be
greater than the current balance of the service);
failure to specify this parameter results in
withdrawal of the total funds accumulated on the
balance; a dot - '.' - is used as decimal separator.
Format: 0.00.
In the Marketplace model, the field must be blank
(total return). Otherwise, it would not be possible
to indicate the billing point(s) to be charged for
such an operation. With a total return, the balance
is deducted according to the sum of the product
amounts of the respective clearing point.

123

Hash
order name required type description

5 Currency NO string{1,3}

Payment currency. The default currency is PLN
(the use of another currency must be agreed
during integration). One currency is supported
within ServiceID.
One currency is supported. Acceptable values
only: PLN, EUR, GBP and USD.

nd. Hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Partner
Service.

In response to the request, an XML-formatted text is returned (in the same HTTP session), either
confirming the operation or describing the error (described below).

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <transactionRefund>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <hash>Hash</hash>
 </transactionRefund>

Description of the fields

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID. Derived from a method
request.

2 messageID YES string{32}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based on
UID). Derived from the method request.

nd. hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Partner
Service.

The option to make refunds to paid transactions is possible up to 12 months back, counting from the
date the transaction was initiated. An exception is BLIK payments, which, due to time constraints on
the part of the payment channel provider, can be refunded up to 6 months back.

124

The above deadlines apply to the processing of returns via the administrative panel and the
transactionRefunde.g. via its own administrative tools. When these are exceeded, an error will be
returned (TRANSACTION_TOO_OLD_TO_REFUND). The scheme of operation is analogous to that for
balance withdrawals. That is, the System accepts the order and asynchronously processes it within a
maximum of 30 minutes, and in the event of failure, information about the operations ending in an
error is sent in a report the following working day.

In the event of connection problems, exceeding the maximum response time, the request can be
renewed with the same MessageID without fear of duplicate requests. All responses other than the
assumed one (i.e. with incorrect fields, in particular blank or incorrect hash). If the System authorises
the sender of the return message, but the operation fails, an error message will be returned in
response.

Product returns

Description

For sites with a balance in the System and specifying the productID parameter in the product basket,
it is possible to perform an operation to return to the Customer the whole or part of the amount paid
for the indicated product. A successful return of the whole amount of a product can be performed
once (in case of a repeated attempt to order the return of the same product, the System returns a
properly described error). Partial product refunds can be performed on the product multiple times, as
long as their total does not exceed the amount paid for the product.

To perform a product return, call the method
productRefund(https://{gate_host}/settlementapi/productRefund) with the appropriate parameters.
All parameters are passed using the POST method (Content-Type: application/x-www-form-
urlencoded). The protocol is case-sensitive in both parameter names and values. The values of the
passed parameters should be encoded in UTF-8.

List of parameters

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 MessageID YES string{32}

Pseudo-random message identifier with a length of
32 alphanumeric characters of the Latin alphabet
(e.g. based on UID), the field value must be unique
and indicate a specific payment order in the
Partner Service. Verification of uniqueness on the
part of the System allows the MessageID to be
repeated in the event of communication problems
(repeating this value will result in confirmation of
the order, without re-execution in the System).

3 RemoteID YES string{1,20}
The alphanumeric identifier of the returned input
transaction assigned by the System and passed to
the Partner in the ITN message of the input
transaction.

125

Hash
order name required type description

4 ProductID YES string{1,36} Identifier of the returned product.

5 Amount NO amount

Amount of the refund (cannot be greater than the
amount of the product and the current balance of
the service + the amount of the refund
commission, if any). Failure to specify this
parameter will result in the return to the customer
of the entire amount paid for the returned product;
a full stop - '.' - is used as a decimal separator.
Format: 0.00.

6 Currency NO string{1,3}

Payment currency. The default currency is PLN
(the use of another currency must be agreed
during integration). One currency is supported
within ServiceID.
Acceptable values only: PLN, EUR, GBP and USD.

nd. Hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Partner
Service.

Response to request

In response to the request, a text is returned (in the same HTTP session) in XML format, containing an
acknowledgement of the operation for execution or a description of the error.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <productRefund>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <hash>Hash</hash>
 </productRefund>

Description of the fields

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID. Derived from a method
request.

2 messageID YES string{32}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based on
UID). Derived from the method request.

126

Hash
order name required type description

nd. hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Partner
Service.

The option to make refunds to paid transactions is possible up to 12 months back, counting from the
date the transaction was initiated. An exception is BLIK payments, which, due to time constraints on
the part of the payment channel provider, can be refunded up to 6 months back.

The above deadlines apply to the processing of refunds via the administration panel and
productRefund, e.g. via your own administration tools. If these are exceeded, an error will be
returned (TRANSACTION_TOO_OLD_TO_REFUND).

The scheme of operation is analogous to that for balance withdrawals. That is, the System accepts the
order and asynchronously processes it within a maximum of 30 minutes, and in the event of a failure,
information about the operations ending in an error is sent in a report the following business day.

In the event of connection problems, exceeding the maximum response time, the request can be
renewed with the same MessageID without fear of duplicate requests. All responses other than the
assumed one (i.e. with incorrect fields, in particular blank or incorrect hash). If the System authorises
the sender of the return message, but the operation fails, an error message will be returned in
response.

Enquiry about the status of a refund or a withdrawal from the balance

Description

Once the refund or balance withdrawal has been made, we have the option of verifying the status of
the billing transaction and
what identifier has been assigned to it by the Online Payment System. For this purpose, call the
method outDetails (https://{gate_host}/settlementapi/outDetails) with the corresponding parameters.
All parameters are passed via the POST method (Content-Type: application/x-www-form-urlencoded).
The protocol is case-sensitive in both parameter names and values. The values of the passed
parameters should be encoded in UTF-8.

List of available parameters for balance withdrawals

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

NOTE: One of the fields ServiceID or BalancePointID is required.
Specifying both will cause the request processing to stop and an http error.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

127

Hash
order name required type description

1 BalancePointID YES string{1,10} Settlement Point Identifier.

2 MessageID YES string{32}
Enter the same message identifier that was
sent previously when ordering a refund or
balance withdrawal.

3 Method YES enum

The operation for which the settlement
transaction was created:
BALANCE_PAYOFF - withdrawal from the
balance
TRANSACTION_REFUND - refund of
transactions
PRODUCT_REFUND - product return

nd. Hash YES string{1,128}

The shared key assigned to the configuration
identifier used (Service or Settlement Point) is
used. The value of the hash function for the
message calculated as described in section
Security of transactions. Mandatory
verification of compliance of the
calculated abbreviation by the Service.

Response to request

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <outDetails>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <status>Status</status>
 <remoteOutId>RemoteOutId</remoteOutId>
 <hash>Hash</hash>
 </outDetails>

or

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <outDetails>
 <balancePointID>BalancePointID</balancePointID>
 <messageID>MessageID</messageID>
 <status>Status</status>
 <remoteOutId>RemoteOutId</remoteOutId>
 <hash>Hash</hash>
 </outDetails>

Description of the fields

128

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10} Partner Service ID. Derived from a method
request.

1 balancePointID YES string{1,10}
Settlement Point Identifier. Derived from a
method request. NOTE: One of the fields will
be returned ServiceID or BalancePointID.

2 messageID YES string{32}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based
on UID). Derived from the method request.

3 status YES enum

Processing status:
NEW - Awaiting in the queue for reprocessing.
PROCESSING - During the process
ERROR - Processing failed e.g. no funds in the
balance
DONE - The processing was successful.

4 remoteOutId NO string{1,20}
The alphanumeric identifier of the settlement
transaction assigned by the Online Payment
System.

nd. hash YES string{1,128}

Value of message digest function calculated
as described in section Security of
transactions. Mandatory verification of
compliance of the calculated
abbreviation by the Partner Service.

Transaction summary page

Description

The system allows a summary of the transaction to be displayed to the customer. For this purpose,
the partner can build trigger links with the appropriate parameters method. confirmation
(https://{gate_host}/web/confirmation/payment). All parameters are transferred using the GET
method. The protocol is case sensitive in both parameter names and values. The values of the passed
parameters should be encoded in UTF-8.

List of parameters for the transaction summary method

Redirecting a Customer with correct parameters will result in the display of a summary of the
transaction (with content depending on its status) or information about its absence (if the System
does not find it).

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

129

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 OrderID YES string{32}
The transaction identifier assigned in the Partner
Service and communicated at the start of the
transaction.

nd. Hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

NOTE: The service must be activated after agreement with the business supervisor. It is
possible to change the content of the messages or adapt the graphic layout (these are subject
to agreement in working form each time during integration).

Enquiry about the status of a transaction

Description

For all services, it is possible to query the current balance. For this purpose, the method
transactionStatus (https://{gate_host}/webapi/transactionStatus) with the relevant parameters. All
parameters are passed via the POST method (Content-Type: application/x-www-form-urlencoded). The
protocol is case-sensitive in both parameter names and values. The values of passed parameters
should be encoded in UTF-8.

List of parameters available for transaction status

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 OrderID YES string{32}
The transaction identifier assigned in the Partner
Service and communicated at the start of the
transaction.

nd. Hash YES string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Partner
Service.

HTTP header for transaction status request

For correct querying, a defined HTTP header with appropriate content must be sent along with the

130

passed parameters. The attached header should be named 'BmHeader' and have the following value
'pay-bm', in its entirety, should be as follows 'BmHeader: pay-bm'. In the case of a valid message, an
(in the same HTTP session) text in XML format is returned, containing all transactions with the
indicated OrderID, together with basic information about them.

TIP: Such a situation may occur e.g. when the Customer changes the Payment Channel, calls up
the same transaction start again from the browser history, etc. The system allows blocking such
cases, but the option is not recommended (it would not be possible to pay the abandoned
transaction).

IMPORTANT! If the query relates to an orderID that occurs in more than 50 transactions of a
given service, a response (XML) with error code 403 is returned.

Response structure when the limit of transactions with the same orderId is reached:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<transaction>
<reason>LIMIT_REQUESTED_TRANSACTIONS_WITH_THE_SAME_ORDER_ID_AND_SERVICE_ID_EXCEEDED</rea
son>
 <description>Transaction limit 50 with the same order id {{ORDER_ID}} and service id
{{SERVICE_ID}} exceeded. Requested count {{TRANSACTION_AMOUNT}}
 </description>
</transaction>

List of fields for a transaction status query

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID YES string{1,10}
The Partner Service ID, assigned during
service registration, uniquely identifies
the Partner Service in the Online
Payment System.

2 orderID YES string{1,32}
The transaction identifier assigned in
the Partner Service and communicated
at the start of the transaction.

3 remoteID YES string{1,20}
An alphanumeric transaction identifier
assigned by the Online Payment
System.

5 amount YES amount
The transaction amount uses a full stop
as decimal separator - '.' Format: 0.00;
maximum length: 14 digits before the
dot and 2 after the dot.

6 currency YES string{1,3} Transaction currency.

131

Hash
order name required type description

7 gatewayID NO string{1,5}
Identifier of the Payment Channel
through which the customer settled the
payment.

8 paymentDate YES string{14}
The time when the transaction was
authorised, transmitted in the format
YYYYMMDDhhmmss. (CET time)

9 paymentStatus YES enum

Transaction authorisation status, takes
values (description of status changes
further on):
PENDING – transaction initiated.
SUCCESS - correct authorisation of the
transaction, the Partner Service will
receive the funds for the transaction -
goods/services can be issued.
FAILURE – transaction not completed
correctly.

10 paymentStatusDetails NO string{64}
Detailed transaction status, value can
be ignored by the Partner Service. TIP:
Detailed description in part Detailed
transaction statuses.

nd. hash YES string{1,128}

Value of message digest function
calculated as described in section
Security of transactions. Mandatory
verification of compliance of the
calculated abbreviation by the
Service.

NOTE: Since the method can return multiple transactions, successive transactions are
downloaded into the Hash (according to the order of occurrence of the transactions in the
response). Within a given transaction, the order according to the number next to the field
(excluding the ServiceID parameter, level up) applies.

Example of a hash function string

 Hash = funkcja(<serviceID> + „|” +
 <orderID1> + „|” + <remoteID1> + „|” + <amount1> + „|” + <currency1> + „|” +
<gatewayID1> + „|” + <paymentDate1> + „|” + <paymentStatus1> + „|” +
<paymentStatusDetails1> + „|” +
 <orderID2> + „|” + <remoteID2> + „|” + <amount2> + „|” + <currency2> + „|” +
<gatewayID2> + „|” + <paymentDate2> + „|” + <paymentStatus2> + „|” +
<paymentStatusDetails2> + …

Handling of transaction status query responses - proposal to handle multiple transactions in response

132

Condition Meaning Proposed message to the
customer

Exactly one transaction with
paymentstatus=SUCCESS

Correctly paid
transaction.

The system has correctly
registered the payment.

More than one transaction with
paymentstatus=SUCCESS

Multiple paid
transactions.

The system has registered
more than one payment.

There is a RemoteID with
paymentstatus=PENDING and there is none
with paymentstatus=SUCCESS

The transaction is
pending payment.

The system is awaiting
payment.

There is at least one transaction but no
status other than paymentstatus=FAILURE

Transaction
cancelled.

The system has registered a
payment cancellation or
failure to authorise
payment.

No transaction or other error Failure to find a
transaction.

The transaction was not
found.

Cancellation of an unpaid transaction

Description of cancellation of an unpaid transaction

For all services it is possible to cancel a started but unpaid transaction by calling the method
transactionCancel (https://{gate_host}/webapi/transactionCancel) with the corresponding parameters.
All parameters are passed via the POST method (Content-Type: application/x-www-form-urlencoded).

The protocol is case-sensitive in both names and values of parameters. Values of transmitted
parameters should be encoded in UTF-8.

List of parameters available for cancelling an unpaid transaction

IMPORTANT! The order of attributes for the Hash enumeration must follow their numbering.

Hash
order name required type description

1 ServiceID YES string{1,10} Partner Service ID.

2 MessageID YES string{32}
Pseudo-random message identifier with a length of
32 Latin alphanumeric characters (e.g. based on
UID). The field value must be unique for the
Partner Service.

3 RemoteID NO string{1,20}

An alphanumeric transaction identifier assigned by
the System and transmitted to the Partner in the
ITN message of the incoming transaction. Its
indication will result in the cancellation of only one
transaction with the indicated RemoteID if
payment is pending (status PENDING).

133

Hash
order name required type description

4 OrderID NO string{32}

The transaction identifier assigned in the Partner
Service and communicated at the start of the
transaction. Its indication (no RemoteID) will
result in the cancellation of all pending
transactions (PENDING status) with the indicated
OrderID (and ServiceID). NOTE: Required one of
the fields OrderID or RemoteID. Specifying both
will result in processing of the request being
stopped and an http error.

nd. Hash YES string{1,128}
Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of the
calculated abbreviation by the Service.

Heading for cancellation of an unpaid transaction

For correct querying, a defined HTTP header with appropriate content must be sent along with the
passed parameters. The attached header should be named 'BmHeader' and have the following value
'pay-bm'. In its entirety, should be as follows 'BmHeader: pay-bm'.

In the case of a valid message, an XML-formatted text is returned (in the same HTTP session),
containing a confirmation of the operation or a description of the error.

Confirmation structure (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <transaction>
 <serviceID>ServiceID</serviceID>
 <messageID>MessageID</messageID>
 <confirmation>ConfStatus</confirmation>
 <reason>Reason</reason>
 <hash>Hash</hash>
 </transaction>

List of parameters for cancelling an unpaid transaction

IMPORTANT! The order of attributes for Hash enumeration must follow their numbering.

Hash
order name required type description

1 serviceID NO string{1,32}
Partner Service ID. Derived from a method
request.
Required for confirmation=CONFIRMED

2 messageID NO string{1,20}
Pseudo-random message identifier of 32 Latin
alphanumeric characters in length (e.g. based
on UID). Derived from the method request.
Required for confirmation=CONFIRMED

134

Hash
order name required type description

3 confirmation YES string{1,100}
Order acknowledgement status.
It can take two values:
- CONFIRMED – the operation was successful
- NOTCONFIRMED – operation failed

4 reason NO string{1,1000} Explanation of the details of the processing of
the request.

nd. hash NO string{1,128}

Value of message digest function calculated as
described in section Security of transactions.
Mandatory verification of compliance of
the calculated abbreviation by the
Service.
Required for confirmation=CONFIRMED

Responses to requests for cancellation of transactions

If the message is syntactically correct, the System will return one of the following pairs describing the
result of the processing. In addition to its interpretation, it is recommended to check the status of the
transaction (method transactionStatus).

Please note that once at least one transaction has been successfully cancelled, it is not possible to
start a new one or to continue a previously started transaction with the same OrderID.

cofnfirmation reason details

CONFIRMED CANCELED_FULLY
For the OrderID indicated: all pending deposit
transactions have been cancelled.
For the indicated RemoteID: the transaction has
been cancelled.

CONFIRMED CANCELED_PARTIALLY

For the OrderID indicated: at least one
transaction was cancelled, but there were
transactions that could not be cancelled (e.g.
they were already paid for).
For the indicated RemoteID: such a response
does not occur.

NOTCONFIRMED INCORRECT_PAYMENT_STATUS
At least one indicated transaction was found, but
none could be cancelled (e.g. there was no
pending transaction).

NOTCONFIRMED TRANSACTION_NOT_FOUND The indicated transaction was not found.

NOTCONFIRMED OTHER_ERROR There was another error when processing the
request.

Error messages

Description of error messages

135

All error messages will be returned as an XML document, containing the error code, its name and
description. Due to the high variability of possible errors, full documentation of errors is not
maintained.

TIP: The description field, describes each error in detail (the statusCode and name fields can
be ignored).

Example of error (XML)

 <?xml version="1.0" encoding="UTF-8"?>
 <error>
 <statusCode>55</statusCode>
 <name>BALANCE_ERROR</name>
 <description>Wrong services balance! Should be 100 but is
40</description>
 </error>

Transaction and settlement patterns

This section presents models, event scenarios and flow information.

Model Paywall

The simplest model, where the choice of payment channels is on the Autopay (paywall) pages.

136

Model WhiteLabel

It is characterised by the presentation of payment channels on the Merchant side. To do this, obtain a
list of channels with descriptions from the gatewayList/v3 service and obtain a list of the
necessary rules and regulations for each payment channel (/legalData). The rest of the process is
the same as in the Paywall model.

Extended structure of services and billing points

The partner structure consists of at least 1 service (identified by an identifier ServiceID) and any
number of points accounts (identified by an identifier idBalancePoint).

Services are usually the sources of Payment Links (website, mobile app, emails, etc.). Services
also distribute traffic relating to different industries (invoice payments, e-Commerce purchases,
etc.). As the transaction is identified by a pair of OrderID and ServiceID, it can be said that
"the service corresponds to the level of the transaction".

Settlement points are defined if there is a need to distinguish in some way the constituent
payments (e.g. by indicating them in reports or independent settlement). Since the product of a
transaction is identified by its associated settlement point (idBalancePoint), it can be said that
the "billing point corresponds to the level of the product".

137

The product basket (and therefore also the billing points) may not be present in the structure
describing the Partner. The reason for adding billing points to the structure influences the decision on
the billing model:

The need to distinguish the components of a deposit in the list of transactions (in reports) does
not necessarily entail separate settlement of each product or billing point; in this situation,
service-level billing models (batch or after each deposit) are usually sufficient.

The need to separate the component settlements of a deposit results in the use of a settlement
model at the settlement point level (aggregate or after each deposit).

Below is an illustration of an example structure (without indicating a specific settlement
model)

Settlement models

Collective settlement model for transactions (default model)

138

Summary settlements take place on the next working day (D+1).

Settlement model for transactions after each payment

Settlement after each payment can be performed immediately after receipt of the payment from the
Customer to the transaction data indicated in the parameters of the Payment Link (options: Recipient
account, Title of settlement transfer, Name of recipient of settlement transfer).

139

Collective product billing model

Summary settlements take place on the next working day (D+1).

Product billing model after each payment

Settlement after each payment can be made immediately after receipt of the payment from the
Customer to the product data indicated in the parameters of the Payment Link (options: Recipient
account, Title of settlement transfer, Name of recipient of settlement transfer).

140

On-demand settlement model

Settlements can be ordered by the Partner by calling the method: transactionSettlement.

